-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet.py
executable file
·109 lines (93 loc) · 4.02 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 8 19:26:29 2017
ref: https://github.com/bamos/densenet.pytorch/blob/master/densenet.py
@author: zengliang
"""
import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
class Bottleneck(nn.Module):
def __init__(self,nChannels,growthRate):
super(Bottleneck,self).__init__()
interChannels = 4*growthRate
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels,interChannels,kernel_size=1,bias=False)
self.bn2 = nn.BatchNorm1d(growthRate)
self.conv2 = nn.Conv2d(interChannels,growthRate,kernel_size=1,padding=1,bias=False)
def forward(self,x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.conv2(F.relu(self.bn2(x)))
out = torch.cat((x,out),1)
return out
class SingerLayer(nn.Module):
def __init__(self,nChannels,growthRate):
super(SingerLayer,self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels,growthRate,kernel_size=3,padding=1,bias=False)
def forward(self,x):
out = self.conv1(F.relu(self.bn1(x)))
out = torch.cat((x,out),1)
return out
class Transtion(nn.Module):
def __init__(self,nChannels,nOutChannels):
super(Transtion,self).__init__()
self.bn1 = nn.BatchNorm2d(nChannels)
self.conv1 = nn.Conv2d(nChannels,nOutChannels,kernel_size=1,bias=False)
def forward(self,x):
out = self.conv1(F.relu(self.bn1(x)))
out = F.avg_pool2d(out,2)
return out
class DenseNet(nn.Module):
def __init__(self,growthRate,depth,reduction,nClasses,bottleneck):
super(DenseNet,self).__init__()
nDenseBlocks = (depth-4) //3
if bottleneck:
nDenseBlocks = depth //2
nChannels = 2*growthRate
self.conv1 = nn.Conv2d(3,nChannels,kernel_size=3,padding=1,bias=False)
self.dense1 = self._make_dense(nChannels,growthRate,nDenseBlocks,bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(np.floor(nChannels*reduction))
self.trans1 = Transtion(nChannels,nOutChannels)
nChannels = nOutChannels
self.dense2 = self._make_dense(nChannels,growthRate,nDenseBlocks,bottleneck)
nChannels += nDenseBlocks*growthRate
nOutChannels = int(np.floor(nChannels*reduction))
self.trans1 = Transtion(nChannels,nOutChannels)
nChannels = nOutChannels
self.dense3 = self._make_dense(nChannels,growthRate,nDenseBlocks,bottleneck)
nChannels += nDenseBlocks*growthRate
self.bn1 = nn.BatchNorm2d(nChannels)
self.fc = nn.Linear(nChannels,nClasses)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, np.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
nn.init.xavier_uniform(m.weight.data)
def _make_dense(self,nChannels, growthRate, nDenseBlocks, bottleneck):
layers = []
for i in range(int(nDenseBlocks)):
if bottleneck:
layers.append(Bottleneck(nChannels,growthRate))
else:
layers.append(SingerLayer(nChannels,growthRate))
nChannels += growthRate
return nn.Sequential(*layers)
def forward(self,x):
out = self.conv1(x)
out = self.trans1(self.dense1(out))
out = self.trans2(self.dense2(out))
out = self.dense3(out)
out = torch.squeeze(F.avg_pool2d(F.relu(self.bn1(out)), 8))
out = F.log_softmax(self.fc(out))
return out