-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmp_utils.py
467 lines (386 loc) · 21.9 KB
/
mp_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
'''
This file is NOT part of PM4Py.
Author: Zsuzsanna Nagy
'''
from __future__ import print_function
from pulp import *
import re
import pandas as pd
def represents_number(s):
try:
if s == "True" or s == "False":
return True
float(s)
return True
except ValueError:
return False
def convert_value(val_type, str_value):
if val_type == int:
return int(str_value)
if val_type == float:
return float(str_value)
if val_type == bool:
return bool(str_value)
B = {int: 100000, float: 100000.0}
e = {int: 1, float: 0.0000001}
class MILPProblemGenerator:
def __init__(self):
self.__solver = LpProblem("OVA",LpMinimize)
self.__objective = dict()
# DataFrame to store the constraint coeffs for the MILP variables (1 row = 1 atomic guard function)
# - col 0: b
# - col 1-n: milp variables
self.__df_ge_cons = pd.DataFrame()
self.__df_ge_cons.insert(0, "b", 0)
# store the MILP variables in the same order they appear in the DataFrame
self.__guard_expr_milp_vars = dict()
self.__str_values_list = []
self.__write_vars_dict = dict()
self.__milp_vars = dict()
self.__or_i = 1
self.__and_i = 1
self.__xor_i = 1
def get_df(self):
print(self.__df_ge_cons)
def __remove_outter_parentheses(self, s):
if len(s) >=3 and s[0] == "(" and s[-1] == ")":
return s[1:-1]
else:
return s
# input can be str, int, float, bool
def __convert_to_number(self, s):
if type(s) == float:
return s
try:
return int(s)
except ValueError:
try:
return float(s)
except ValueError:
return None
def __get_guardf_components(self, s, split_str):
s = s[1:len(s)-1]
return s.split(split_str)
def __get_or_rels(self, rels):
or_rel_list = []
for x in rels:
if "OR" in x:
or_rel_list.append(x)
return or_rel_list
def __get_atomic_gfs_for_or_rels(self, rels, node, container):
if "x" in node:
container.add(rels[node])
else:
self.__get_atomic_gfs_for_or_rels(rels, rels[node][0], container)
self.__get_atomic_gfs_for_or_rels(rels, rels[node][1], container)
def __complex_gf_processing(self, s):
rels = {}
or_rels_atomic_guards = {}
atomic_guards_or_rels = {}
# find the atomic guard functions
p = re.compile('\([a-zA-Z0-9-+*/=!><\'\"\_]*\)')
search_results = re.finditer(p, s)
i = 1
for item in search_results:
if item.group(0) != "":
atomic_gf = item.group(0).replace(" ","")
atomic_gf = atomic_gf[1:len(atomic_gf)-1] # remove "(" and ")"
x_var = "x"+str(i)
atomic_guards_or_rels[atomic_gf] = set()
rels[x_var] = atomic_gf
s = s.replace(item.group(0),x_var)
i+=1
# find the relationships between the atomic guard functions
p = re.compile('\([a-zA-Z0-9&|]*\)')
while s.find("&&") != -1 or s.find("||")!= -1:
search_results = re.finditer(p, s)
for item in search_results:
if item.group(0) != "":
# AND relationship
if (item.group(0).find("&&") != -1):
and_rep = "AND"+str(self.__and_i)
s = s.replace(item.group(0), and_rep)
a,b = self.__get_guardf_components(item.group(0),"&&")
rels[and_rep] = [a,b]
self.__and_i+=1
# OR relationship
if (item.group(0).find("||") != -1):
or_rep = "OR"+str(self.__or_i)
s = s.replace(item.group(0), or_rep)
a,b = self.__get_guardf_components(item.group(0),"||")
rels[or_rep] = [a,b]
self.__or_i+=1
# OR relationships -> atomic guard functions
or_rel_list = self.__get_or_rels(rels)
for or_rel in or_rel_list:
or_rels_atomic_guards[or_rel] = (set(),set())
self.__get_atomic_gfs_for_or_rels(rels, rels[or_rel][0], or_rels_atomic_guards[or_rel][0])
self.__get_atomic_gfs_for_or_rels(rels, rels[or_rel][1], or_rels_atomic_guards[or_rel][1])
# atomic guard functions -> MILP variables for OR relationships
for or_rel in or_rels_atomic_guards:
for g in or_rels_atomic_guards[or_rel][0]:
atomic_guards_or_rels[g].add(or_rel+"_1")
for g in or_rels_atomic_guards[or_rel][1]:
atomic_guards_or_rels[g].add(or_rel+"_2")
return or_rel_list, atomic_guards_or_rels
def __add_milp_varibale_to_df(self, milp_var_name, milp_var):
self.__df_ge_cons.insert(self.__df_ge_cons.shape[1], milp_var_name, 0)
self.__guard_expr_milp_vars[self.__df_ge_cons.shape[1]-1] = milp_var
def __add_vars_and_constraints_for_or_rels(self, or_rel_list):
for or_rel in or_rel_list:
# add variables for OR relationship
or_i_1_str = or_rel+"_1"
or_i_2_str = or_rel+"_2"
self.__milp_vars[or_i_1_str] = LpVariable(or_i_1_str, lowBound = 0, upBound = 1, cat = 'Integer')
self.__milp_vars[or_i_2_str] = LpVariable(or_i_2_str, lowBound = 0, upBound = 1, cat = 'Integer')
self.__add_milp_varibale_to_df(or_i_1_str, self.__milp_vars[or_i_1_str])
self.__add_milp_varibale_to_df(or_i_2_str, self.__milp_vars[or_i_2_str])
# add constraint
# or_i_1 + or_i_2 <= 1
self.__solver += self.__milp_vars[or_i_1_str] + self.__milp_vars[or_i_2_str] <= 1
def __add_vars_and_constraint_for_xor_rel(self):
# add variables for XOR relationship
xor_1_str = "xor_"+str(self.__xor_i)
xor_2_str = "xor_"+str(self.__xor_i+1)
self.__xor_i = self.__xor_i + 2
self.__milp_vars[xor_1_str] = LpVariable(xor_1_str, lowBound = 0, upBound = 1, cat = 'Integer')
self.__milp_vars[xor_2_str] = LpVariable(xor_2_str, lowBound = 0, upBound = 1, cat = 'Integer')
self.__add_milp_varibale_to_df(xor_1_str, self.__milp_vars[xor_1_str])
self.__add_milp_varibale_to_df(xor_2_str, self.__milp_vars[xor_2_str])
# add constraint
# xor_i + xor_i+1 <= 1
self.__solver += self.__milp_vars[xor_1_str] + self.__milp_vars[xor_2_str] == 1
return xor_1_str, xor_2_str
def __get_sign(self, atomic_guard_expr_side, element):
start_index = atomic_guard_expr_side.find(str(element))
if start_index != 0:
if atomic_guard_expr_side[start_index-1] == "-":
return -1
else:
return 1
else:
return 1
def __handle_str_value(self, value):
if not represents_number(value):
if value not in self.__str_values_list:
self.__str_values_list += [value]
return self.__str_values_list.index(value)
else:
return value
def __process_atomic_guard_function(self, guard_expression_side, is_right, df_new_row_index):
take_left = -1 if is_right else 1
take_right = 1 if is_right else -1
sum_list = re.split('\+|\-',guard_expression_side)
for sum_element in sum_list:
if sum_element != "":
elements = sum_element.split('*')
# one element -> only variable OR constant value
if len(elements) == 1:
element = elements[0]
# if variable
if element in self.__df_ge_cons.columns:
sign = self.__get_sign(guard_expression_side,element) * take_left
self.__df_ge_cons.at[df_new_row_index, element] += sign
# if constant
else:
sign = self.__get_sign(guard_expression_side,element) * take_right
element = self.__handle_str_value(element)
self.__df_ge_cons.at[df_new_row_index, "b"] += sign * self.__convert_to_number(element)
# two elements -> variable AND constant value
elif len(elements) == 2:
var_i = 0
cons_i = 0
# find the variable
if elements[0] in self.__df_ge_cons.columns:
cons_i = 1
if elements[1] in self.__df_ge_cons.columns:
var_i = 1
sign_var = self.__get_sign(guard_expression_side,elements[var_i])
sign_cons = self.__get_sign(guard_expression_side,elements[cons_i])
sign_total = sign_var * sign_cons * take_left
elements[cons_i] = self.__handle_str_value(elements[cons_i])
self.__df_ge_cons.at[df_new_row_index, elements[var_i]] += sign_total * self.__convert_to_number(elements[cons_i])
# more than two elements
elif len(elements) > 2:
print("Error: The guard function isn't linear!")
def __add_variable_writing_to_write_vars_dict(self, var_name, var_type, var_init, written_value=None):
if var_name not in self.__write_vars_dict.keys():
self.__write_vars_dict[var_name] = []
write_var_nr = len(self.__write_vars_dict[var_name])
if var_type == str:
# give int code to the str value
if written_value not in self.__str_values_list:
self.__str_values_list += [written_value]
self.__write_vars_dict[var_name] += [self.__str_values_list.index(written_value)]
else:
self.__write_vars_dict[var_name] += [written_value]
return var_name + "_" + str(write_var_nr)
def add_variable_writing(self, var_name, var_type, var_init, written_value, cost):
if var_type == int or var_type == float:
written_value = self.__convert_to_number(written_value)
# check the written value
if written_value != None and not (isinstance(written_value, float) and math.isnan(written_value)):
# create the MILP constraints for the variable writing
v_i = self.__add_variable_writing_to_write_vars_dict(var_name, var_type, var_init, written_value)
_v_i = "_" + v_i
b_i = written_value if var_type != str else self.__str_values_list.index(written_value)
# Add variables
if var_type == float:
self.__milp_vars[v_i] = LpVariable(v_i)
v_type = float
elif var_type == bool:
self.__milp_vars[v_i] = LpVariable(v_i, cat = 'Binary')
v_type = int
elif var_type == str:
self.__milp_vars[v_i] = LpVariable(v_i, lowBound = 0, cat = 'Integer')
v_type = int
elif var_type == int:
self.__milp_vars[v_i] = LpVariable(v_i, cat = 'Integer')
v_type = int
self.__milp_vars[_v_i] = LpVariable(_v_i, cat='Binary')
self.__add_milp_varibale_to_df(v_i, self.__milp_vars[v_i])
# Add constraints
# v_i - B * _v_i <= b_i
# v_i + B * _v_i >= b_i
self.__solver += self.__milp_vars[v_i] - B[v_type] * self.__milp_vars[_v_i] <= b_i
self.__solver += self.__milp_vars[v_i] + B[v_type] * self.__milp_vars[_v_i] >= b_i
# Add the boolean variable to the objective function
self.__objective[self.__milp_vars[_v_i]] = cost
return v_i, written_value
else:
print("Error: wrong variable value ", var_name, var_init, written_value)
return self.add_variable_writing(var_name, var_type, var_init, var_init, cost)
# used when there is only model move (i.e., missing variable writing)
def add_variable(self, var_name, var_type, var_init):
v_i = self.__add_variable_writing_to_write_vars_dict(var_name, var_type, var_init, var_init)
if var_type == float:
self.__milp_vars[v_i] = LpVariable(v_i)
elif var_type == bool:
self.__milp_vars[v_i] = LpVariable(v_i, cat = 'Binary')
elif var_type == str:
self.__milp_vars[v_i] = LpVariable(v_i, lowBound = 0, cat = 'Integer')
elif var_type == int:
self.__milp_vars[v_i] = LpVariable(v_i, cat = 'Integer')
self.__add_milp_varibale_to_df(v_i, self.__milp_vars[v_i])
return v_i
def add_guard_function(self, guard_expr):
guard_expr = guard_expr.replace("\"","")
# replace: 'var -> v_i, var -> v_i-1
for var in self.__write_vars_dict.keys():
if var in guard_expr:
# get the current value of the variable
v_i = var + "_" + str(len(self.__write_vars_dict[var])-1)
# if the transition writes the variable -> prime variable
if var+"'" in guard_expr:
v_i_1 = var + "_" + str(len(self.__write_vars_dict[var])-2)
guard_expr = guard_expr.replace(var, v_i_1)
guard_expr = guard_expr.replace(v_i_1+"'", v_i)
else:
guard_expr = guard_expr.replace(var, v_i)
# split the guard expression into atomic elements
or_rel_list, atomic_guards_or_rels = self.__complex_gf_processing(guard_expr)
# add variables and constraints for OR relationships
self.__add_vars_and_constraints_for_or_rels(or_rel_list)
# create a MILP constraint for each atomic element
for atomic_guard_expr in atomic_guards_or_rels:
for rs in ["<=", ">=", "==", "!=", "<", ">"]:
if len(atomic_guard_expr.split(rs)) == 2:
# add new line to the df
self.__df_ge_cons.loc[self.__df_ge_cons.shape[0]] = 0
df_new_row_index = self.__df_ge_cons.shape[0] - 1
# process the atomic guard function (left and right side)
left, right = atomic_guard_expr.split(rs)
self.__process_atomic_guard_function(left, False, df_new_row_index)
self.__process_atomic_guard_function(right, True, df_new_row_index)
# transform into milp constraints
## <=
if rs == "<=":
if len(atomic_guards_or_rels[atomic_guard_expr]) > 0:
for or_i_j_str in atomic_guards_or_rels[atomic_guard_expr]:
self.__df_ge_cons.at[df_new_row_index, or_i_j_str] = -B[int]
constraint_expr = [self.__df_ge_cons.iat[df_new_row_index,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
self.__solver += lpSum(constraint_expr) <= self.__df_ge_cons.at[df_new_row_index,"b"]
## >=
if rs == ">=":
if len(atomic_guards_or_rels[atomic_guard_expr]) > 0:
for or_i_j_str in atomic_guards_or_rels[atomic_guard_expr]:
self.__df_ge_cons.at[df_new_row_index, or_i_j_str] = B[int]
constraint_expr = [self.__df_ge_cons.iat[df_new_row_index,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
self.__solver += lpSum(constraint_expr) >= self.__df_ge_cons.at[df_new_row_index,"b"]
## ==
if rs == "==":
self.__df_ge_cons.loc[df_new_row_index+1] = self.__df_ge_cons.loc[df_new_row_index]
if len(atomic_guards_or_rels[atomic_guard_expr]) > 0:
for or_i_j_str in atomic_guards_or_rels[atomic_guard_expr]:
self.__df_ge_cons.at[df_new_row_index, or_i_j_str] = -B[int]
self.__df_ge_cons.at[df_new_row_index+1, or_i_j_str] = B[int]
constraint_expr_1 = [self.__df_ge_cons.iat[df_new_row_index,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
constraint_expr_2 = [self.__df_ge_cons.iat[df_new_row_index+1,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
self.__solver += lpSum(constraint_expr_1) <= self.__df_ge_cons.at[df_new_row_index,"b"]
self.__solver += lpSum(constraint_expr_2) >= self.__df_ge_cons.at[df_new_row_index+1,"b"]
## !=
if rs == "!=":
self.__df_ge_cons.loc[df_new_row_index+1] = self.__df_ge_cons.loc[df_new_row_index]
self.__df_ge_cons.at[df_new_row_index, "b"] -= e[int]
self.__df_ge_cons.at[df_new_row_index+1, "b"] += e[int]
xor_1_str, xor_2_str = self.__add_vars_and_constraint_for_xor_rel()
self.__df_ge_cons.at[df_new_row_index, xor_1_str] = -B[int]
self.__df_ge_cons.at[df_new_row_index+1, xor_2_str] = B[int]
if len(atomic_guards_or_rels[atomic_guard_expr]) > 0:
for or_i_j_str in atomic_guards_or_rels[atomic_guard_expr]:
self.__df_ge_cons.at[df_new_row_index, or_i_j_str] = -B[int]
self.__df_ge_cons.at[df_new_row_index+1, or_i_j_str] = B[int]
constraint_expr_1 = [self.__df_ge_cons.iat[df_new_row_index,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
constraint_expr_2 = [self.__df_ge_cons.iat[df_new_row_index+1,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
self.__solver += lpSum(constraint_expr_1) <= self.__df_ge_cons.at[df_new_row_index,"b"]
self.__solver += lpSum(constraint_expr_2) >= self.__df_ge_cons.at[df_new_row_index+1,"b"]
## <
if rs == "<":
self.__df_ge_cons.at[df_new_row_index, "b"] -= e[int]
if len(atomic_guards_or_rels[atomic_guard_expr]) > 0:
for or_i_j_str in atomic_guards_or_rels[atomic_guard_expr]:
self.__df_ge_cons.at[df_new_row_index, or_i_j_str] = -B[int]
constraint_expr = [self.__df_ge_cons.iat[df_new_row_index,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
self.__solver += lpSum(constraint_expr) <= self.__df_ge_cons.at[df_new_row_index,"b"]
## >
if rs == ">":
self.__df_ge_cons.at[df_new_row_index, "b"] += e[int]
if len(atomic_guards_or_rels[atomic_guard_expr]) > 0:
for or_i_j_str in atomic_guards_or_rels[atomic_guard_expr]:
self.__df_ge_cons.at[df_new_row_index, or_i_j_str] = B[int]
constraint_expr = [self.__df_ge_cons.iat[df_new_row_index,j] * self.__guard_expr_milp_vars[j] for j in range(1,self.__df_ge_cons.shape[1])]
self.__solver += lpSum(constraint_expr) >= self.__df_ge_cons.at[df_new_row_index,"b"]
break
def solve_problem(self, output_path, case_id, nr):
self.__solver += LpAffineExpression(self.__objective)
file_name = "OVA_problem_" + str(case_id) + "_" + str(nr) + ".lp"
self.__solver.writeLP(os.path.join(output_path, file_name))
self.__solver.solve(PULP_CBC_CMD(msg=0, logPath=os.devnull))
self.__status = LpStatus[self.__solver.status]
def get_variable_assignment(self, milp_var_name, var_type=None):
for var in self.__solver.variables():
if var.name == milp_var_name:
solution = var.varValue
if var_type == int:
return int(solution)
if var_type == str and solution<len(self.__str_values_list):
return self.__str_values_list[int(solution)]
return solution
else:
return None
def get_variable_assignments(self):
variable_assignments = dict()
for var in self.__solver.variables():
if var.name[0] != "_":
variable_assignments[var.name] = var.varValue
return variable_assignments
def get_variable_assignment_cost(self):
if self.__status == "Optimal":
return value(self.__solver.objective)
else:
return None
def is_solution_optimal(self):
if self.__status == "Optimal":
return True
else:
return False