-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathdetect_multi_threaded.py
202 lines (179 loc) · 6.62 KB
/
detect_multi_threaded.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import datetime
from utils.detector_utils import WebcamVideoStream
import time
from multiprocessing import Queue, Pool
import multiprocessing
import tensorflow as tf
import cv2
from utils import detector_utils as detector_utils
from utils import recognizer_utils as recognizer_utils
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
# 消除警告
frame_processed = 0
score_thresh = 0.5
# Create a worker thread that loads graph and
# does detection on images in an input queue and puts it on an output queue
def worker(input_q, output_q, cap_params, frame_processed):
print(">> loading frozen model for worker")
detection_graph, sess = detector_utils.load_inference_graph()
sess = tf.compat.v1.Session(graph=detection_graph)
while True:
#print("> ===== in worker loop, frame ", frame_processed)
frame = input_q.get()
if (frame is not None):
# Actual detection. Variable boxes contains
# the bounding box cordinates for hands detected,
# while scores contains the confidence for each of these boxes.
# Hint: If len(boxes) > 1 , you may assume
# you have found atleast one hand (within your score threshold)
boxes, scores = detector_utils.detect_objects(
frame, detection_graph, sess)
# draw bounding boxes
boxes_to_recog, scores_to_show = detector_utils.draw_box_on_image(
cap_params['num_hands_detect'], cap_params["score_thresh"],
scores, boxes, cap_params['im_width'], cap_params['im_height'],
frame)
b_have_hand, img_roi, img_extended = recognizer_utils.drawBoxOfROI(
scores_to_show, boxes_to_recog, 0.2, 0.8,
cap_params['im_width'], cap_params['im_height'], frame)
img_roi = recognizer_utils.processROI(b_have_hand, img_roi, img_extended)
# add frame annotated with bounding box to queue
output_q.put(frame)
output_q.put(img_roi)
frame_processed += 1
else:
output_q.put(frame)
sess.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'-src',
'--source',
dest='video_source',
type=str,
default=0,
help='Device index of the camera.')
parser.add_argument(
'-nhands',
'--num_hands',
dest='num_hands',
type=int,
default=2,
help='Max number of hands to detect.')
parser.add_argument(
'-fps',
'--fps',
dest='fps',
type=int,
default=1,
help='Show FPS on detection/display visualization')
parser.add_argument(
'-wd',
'--width',
dest='width',
type=int,
default=300,
help='Width of the frames in the video stream.')
parser.add_argument(
'-ht',
'--height',
dest='height',
type=int,
default=200,
help='Height of the frames in the video stream.')
parser.add_argument(
'-ds',
'--display',
dest='display',
type=int,
default=1,
help='Display the detected images using OpenCV. This reduces FPS')
parser.add_argument(
'-num-w',
'--num-workers',
dest='num_workers',
type=int,
default=4,
help='Number of workers.')
parser.add_argument(
'-q-size',
'--queue-size',
dest='queue_size',
type=int,
default=5,
help='Size of the queue.')
args = parser.parse_args()
input_q = Queue(maxsize=args.queue_size)
output_q = Queue(maxsize=args.queue_size)
video_capture = WebcamVideoStream(
src=args.video_source, width=args.width, height=args.height).start()
cap_params = {}
frame_processed = 0
cap_params['im_width'], cap_params['im_height'] = video_capture.size()
cap_params['score_thresh'] = score_thresh
# max number of hands we want to detect/track
cap_params['num_hands_detect'] = args.num_hands
print(cap_params, args)
# spin up workers to paralleize detection.
pool = Pool(args.num_workers, worker,
(input_q, output_q, cap_params, frame_processed))
start_time = datetime.datetime.now()
num_frames = 0
fps = 0
index = 0
cv2.namedWindow('Multi-Threaded Detection', cv2.WINDOW_NORMAL)
cv2.namedWindow('ROI', cv2.WINDOW_AUTOSIZE)
# ----------------Loop开始---------------- #
while True:
try:
frame = video_capture.read()
index += 1
if args.video_source == 0:
# 摄像头视频
frame = cv2.flip(frame, 1)
input_q.put(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
output_frame = output_q.get()
output_roi = output_q.get()
output_frame = cv2.cvtColor(output_frame, cv2.COLOR_RGB2BGR)
output_roi = cv2.cvtColor(output_roi, cv2.COLOR_RGB2BGR)
else:
# 非摄像头视频
input_q.put(frame)
output_frame = output_q.get()
output_roi = output_q.get()
elapsed_time = (datetime.datetime.now() -
start_time).total_seconds()
num_frames += 1
fps = num_frames / elapsed_time
# print("frame ", index, num_frames, elapsed_time, fps)
if (output_frame is not None):
if (args.display > 0):
if (args.fps > 0):
detector_utils.draw_fps_on_image("FPS : " + str(int(fps)),
output_frame)
cv2.imshow('Multi-Threaded Detection', output_frame)
cv2.imshow('ROI', output_roi)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
else:
if (num_frames == 400):
num_frames = 0
start_time = datetime.datetime.now()
else:
print("frames processed: ", index, "elapsed time: ",
elapsed_time, "fps: ", str(int(fps)))
else:
# print("video end")
break
except Exception as e:
print('【Exception】: ', e)
# ----------------Loop结束---------------- #
elapsed_time = (datetime.datetime.now() - start_time).total_seconds()
fps = num_frames / elapsed_time
print("fps", fps)
video_capture.stop()
cv2.destroyAllWindows()
pool.terminate()
pool.join()