-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patha2c_mtcar.py
165 lines (126 loc) · 4.52 KB
/
a2c_mtcar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import gym
import numpy as np
from itertools import count
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.nn.init as init
import sklearn
import sklearn.pipeline
import sklearn.preprocessing
from sklearn.kernel_approximation import RBFSampler
from drawnow import drawnow, figure
import matplotlib.pyplot as plt
last_score_plot = [0]
avg_score_plot = [0]
def draw_fig():
plt.title('reward')
plt.plot(last_score_plot, '-')
plt.plot(avg_score_plot, 'r-')
parser = argparse.ArgumentParser(description='PyTorch A2C solution of MountainCarContinuous-V0')
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--actor_lr', type=float, default=1e-4)
parser.add_argument('--critic_lr', type=float, default=5e-4)
parser.add_argument('--max_episode', type=int, default=100)
cfg = parser.parse_args()
env = gym.make('MountainCarContinuous-v0')
observation_examples = np.array([env.observation_space.sample() for x in range(10000)])
scaler = sklearn.preprocessing.StandardScaler()
scaler.fit(observation_examples)
# env.seed(args.seed)
# torch.manual_seed(args.seed)
featurizer = sklearn.pipeline.FeatureUnion([
("rbf1", RBFSampler(gamma=5.0, n_components=100)),
("rbf2", RBFSampler(gamma=2.0, n_components=100)),
("rbf3", RBFSampler(gamma=1.0, n_components=100)),
("rbf4", RBFSampler(gamma=0.5, n_components=100))
])
featurizer.fit(scaler.transform(observation_examples))
def process_state(state):
scaled = scaler.transform([state])
featurized = featurizer.transform(scaled)
return featurized[0]
class Actor(nn.Module):
def __init__(self):
super(Actor, self).__init__()
self.fc_mu = nn.Linear(400, 1)
self.fc_sigma = nn.Linear(400, 1)
init.xavier_normal_(self.fc_mu.weight)
init.xavier_normal_(self.fc_sigma.weight)
def forward(self, x):
mu = self.fc_mu(x)
sigma = F.softplus(self.fc_sigma(x)) + 1e-5
return mu, sigma
class Critic(nn.Module):
def __init__(self):
super(Critic, self).__init__()
self.fc_value = nn.Linear(400, 1)
init.xavier_normal_(self.fc_value.weight)
def forward(self, x):
value = self.fc_value(x)
return value
def get_action(state):
state = torch.from_numpy(process_state(state)).float().cuda()
action_mu, action_sigma = actor(state)
action_dist = torch.distributions.normal.Normal(action_mu, action_sigma)
action = action_dist.sample()
action = torch.clamp(action, float(env.action_space.low[0]), float(env.action_space.high[0]))
return action.item()
def get_state_value(state):
state = torch.from_numpy(process_state(state)).float().cuda()
state_value = critic(state)
return state_value.item()
def update_actor(state, action, advantage):
state = torch.from_numpy(process_state(state)).float().cuda()
action_mu, action_sigma = actor(state)
action_dist = torch.distributions.normal.Normal(action_mu, action_sigma)
act_loss = -action_dist.log_prob(torch.tensor(action).cuda()) * advantage
entropy = action_dist.entropy()
loss = act_loss - 1e-4 * entropy
actor_optimizer.zero_grad()
loss.backward()
actor_optimizer.step()
return
def update_critic(state, target):
state = torch.from_numpy(process_state(state)).float().cuda()
state_value = critic(state)
loss = F.mse_loss(state_value, torch.tensor(target).cuda())
critic_optimizer.zero_grad()
loss.backward()
critic_optimizer.step()
return
actor = Actor().cuda()
critic = Critic().cuda()
actor_optimizer = optim.Adam(actor.parameters(), lr=cfg.actor_lr)
critic_optimizer = optim.Adam(critic.parameters(), lr=cfg.critic_lr)
def main():
stats = []
for i_episode in range(cfg.max_episode):
state = env.reset()
episode_score = 0
for t in count():
action = get_action(state)
next_state, reward, done, _ = env.step([action])
episode_score += reward
# env.render()
target = reward + cfg.gamma * get_state_value(next_state)
td_error = target - get_state_value(state)
update_actor(state, action, advantage=td_error)
update_critic(state, target)
if done:
avg_score_plot.append(avg_score_plot[-1] * 0.99 + episode_score * 0.01)
last_score_plot.append(episode_score)
drawnow(draw_fig)
break
state = next_state
stats.append(episode_score)
if np.mean(stats[-100:]) > 90 and len(stats) >= 101:
print(np.mean(stats[-100:]))
print("Solved")
print("Episode: {}, reward: {}.".format(i_episode, episode_score))
return np.mean(stats[-100:])
if __name__ == '__main__':
main()
plt.pause(0)