-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdqn_cartp.py
127 lines (90 loc) · 3.43 KB
/
dqn_cartp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import gym
import numpy as np
import argparse
from itertools import count
from collections import deque
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from drawnow import drawnow
import matplotlib.pyplot as plt
last_score_plot = [0]
avg_score_plot = [0]
def draw_fig():
plt.title('reward')
plt.plot(last_score_plot, '-')
plt.plot(avg_score_plot, 'r-')
parser = argparse.ArgumentParser(description='PyTorch DQN solution of CartPole-v0')
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epsilon_start', type=float, default=0.9)
parser.add_argument('--epsilon_end', type=float, default=0.05)
parser.add_argument('--target_update', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--max_episode', type=int, default=500)
cfg = parser.parse_args()
env = gym.make('CartPole-v0')
class Memory(object):
def __init__(self, memory_size=10000):
self.memory = deque(maxlen=memory_size)
self.memory_size = memory_size
def __len__(self):
return len(self.memory)
def append(self, item):
self.memory.append(item)
def sample_batch(self, batch_size):
idx = np.random.permutation(len(self.memory))[:batch_size]
return [self.memory[i] for i in idx]
class DQN(nn.Module):
def __init__(self):
super(DQN, self).__init__()
self.fc1 = nn.Linear(4, 64)
self.fc3 = nn.Linear(64, 2)
def forward(self, x):
x = F.elu(self.fc1(x))
x = self.fc3(x)
return x
def get_action(state, epsilon):
with torch.no_grad():
greedy_action = torch.argmax(policy_net(state), dim=1).item()
random_action = np.random.randint(0, 2)
return random_action if np.random.rand() < epsilon else greedy_action
def update_network(states, actions, next_states, rewards, dones):
state_action_values = policy_net(states).gather(1, actions[:, None].long()).squeeze()
next_state_values = torch.max(target_net(next_states), dim=1)[0].detach()
expected_state_action_values = rewards + next_state_values * (1 - dones) * cfg.gamma
loss = F.mse_loss(state_action_values, expected_state_action_values)
optimizer.zero_grad()
loss.backward()
optimizer.step()
policy_net = DQN()
target_net = DQN()
target_net.load_state_dict(policy_net.state_dict())
optimizer = optim.RMSprop(policy_net.parameters(), lr=cfg.lr, weight_decay=1e-4)
memory = Memory(10000)
for i in range(cfg.max_episode):
episode_durations = 0
state = env.reset()
epsilon = (cfg.epsilon_end - cfg.epsilon_start) * (i / cfg.max_episode) + cfg.epsilon_start
for t in count():
action = get_action(torch.tensor(state).float()[None, :], epsilon)
next_state, reward, done, _ = env.step(action)
memory.append([state, action, next_state, reward, done])
state = next_state
if len(memory) > cfg.batch_size:
states, actions, next_states, rewards, dones = \
map(lambda x: torch.tensor(x).float(), zip(*memory.sample_batch(cfg.batch_size)))
update_network(states, actions, next_states, rewards, dones)
if done:
episode_durations = t + 1
avg_score_plot.append(avg_score_plot[-1] * 0.99 + episode_durations * 0.01)
last_score_plot.append(episode_durations)
drawnow(draw_fig)
break
# Update the target network
if i % cfg.target_update == 0:
target_net.load_state_dict(policy_net.state_dict())
print('Complete')
env.close()
plt.pause(0)