-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathppo_mtcar.py
226 lines (169 loc) · 6.4 KB
/
ppo_mtcar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import gym
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from drawnow import drawnow
import matplotlib.pyplot as plt
last_score_plot = [-100]
avg_score_plot = [-100]
def draw_fig():
plt.title('reward')
plt.plot(last_score_plot, '-')
plt.plot(avg_score_plot, 'r-')
parser = argparse.ArgumentParser(description='PyTorch PPO solution of MountainCarContinuous-v0')
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--actor_lr', type=float, default=1e-3)
parser.add_argument('--critic_lr', type=float, default=1e-3)
parser.add_argument('--clip_epsilon', type=float, default=0.2)
parser.add_argument('--gae_lambda', type=float, default=0.97)
parser.add_argument('--batch_size', type=int, default=10000)
parser.add_argument('--max_episode', type=int, default=100)
cfg = parser.parse_args()
env = gym.make('MountainCarContinuous-v0')
class running_state:
def __init__(self, state):
self.len = 1
self.running_mean = state
self.running_std = state ** 2
def update(self, state):
self.len += 1
old_mean = self.running_mean.copy()
self.running_mean[...] = old_mean + (state - old_mean) / self.len
self.running_std[...] = self.running_std + (state - old_mean) * (state - self.running_mean)
def mean(self):
return self.running_mean
def std(self):
return np.sqrt(self.running_std / (self.len - 1))
class Actor(nn.Module):
def __init__(self):
super(Actor, self).__init__()
self.fc1 = nn.Linear(2, 64)
self.fc2 = nn.Linear(64, 64)
self.fc_mean = nn.Linear(64, 1)
self.fc_log_std = nn.Linear(64, 1)
def forward(self, x):
x = F.elu(self.fc1(x))
x = F.elu(self.fc2(x))
action_mean = self.fc_mean(x)
action_std = torch.exp(self.fc_log_std(x))
return action_mean.squeeze(), action_std.squeeze()
def get_action(state):
action_mean, action_std = actor(state)
action_dist = torch.distributions.Normal(action_mean, action_std)
action = action_dist.sample()
return action.item()
def synchronize_actors():
for target_param, param in zip(actor_old.parameters(), actor.parameters()):
target_param.data.copy_(param.data)
def update_actor(state, action, advantage):
mean_old, std_old = actor_old(state)
action_dist_old = torch.distributions.Normal(mean_old, std_old)
action_log_probs_old = action_dist_old.log_prob(action)
mean, std = actor(state)
action_dist = torch.distributions.Normal(mean, std)
action_log_probs = action_dist.log_prob(action)
# update old actor before update current actor
synchronize_actors()
r_theta = torch.exp(action_log_probs - action_log_probs_old)
surrogate1 = r_theta * advantage
surrogate2 = torch.clamp(r_theta, 1.0 - cfg.clip_epsilon, 1.0 + cfg.clip_epsilon) * advantage
loss = -torch.min(surrogate1, surrogate2).mean()
entropy = action_dist.entropy()
loss = torch.mean(loss - 1e-2 * entropy)
actor_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm(actor.parameters(), 40)
actor_optimizer.step()
return
class Critic(nn.Module):
def __init__(self):
super(Critic, self).__init__()
self.fc1 = nn.Linear(2, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, 1)
def forward(self, x):
x = F.elu(self.fc1(x))
x = F.elu(self.fc2(x))
value = self.fc3(x)
return value.squeeze()
def get_state_value(state):
state_value = critic(state)
return state_value
def update_critic(state, target):
state_value = critic(state)
loss = F.mse_loss(state_value, target)
critic_optimizer.zero_grad()
loss.backward()
critic_optimizer.step()
return
actor = Actor()
actor_old = Actor()
critic = Critic()
actor_optimizer = optim.Adam(actor.parameters(), lr=cfg.actor_lr)
critic_optimizer = optim.Adam(critic.parameters(), lr=cfg.critic_lr)
def main():
state = env.reset()
state_stat = running_state(state)
for i in range(cfg.max_episode):
start_time = time.perf_counter()
episode_score = 0
episode = 0
memory = []
with torch.no_grad():
while len(memory) < cfg.batch_size:
episode += 1
state = env.reset()
state_stat.update(state)
state = np.clip((state - state_stat.mean()) / (state_stat.std() + 1e-6), -10., 10.)
for s in range(1000):
action = get_action(torch.tensor(state).float()[None, :])
next_state, reward, done, _ = env.step([action])
state_stat.update(next_state)
next_state = np.clip((next_state - state_stat.mean()) / (state_stat.std() + 1e-6), -10., 10.)
memory.append([state, action, reward, next_state, done])
state = next_state
episode_score += reward
if done:
break
state_batch, \
action_batch, \
reward_batch, \
next_state_batch, \
done_batch = map(lambda x: np.array(x).astype(np.float32), zip(*memory))
state_batch = torch.tensor(state_batch).float()
values = get_state_value(state_batch).detach().cpu().numpy()
returns = np.zeros(action_batch.shape)
deltas = np.zeros(action_batch.shape)
advantages = np.zeros(action_batch.shape)
prev_return = 0
prev_value = 0
prev_advantage = 0
for i in reversed(range(reward_batch.shape[0])):
returns[i] = reward_batch[i] + cfg.gamma * prev_return * (1 - done_batch[i])
# generalized advantage estimation
deltas[i] = reward_batch[i] + cfg.gamma * prev_value * (1 - done_batch[i]) - values[i]
advantages[i] = deltas[i] + cfg.gamma * cfg.gae_lambda * prev_advantage * (1 - done_batch[i])
prev_return = returns[i]
prev_value = values[i]
prev_advantage = advantages[i]
advantages = (advantages - advantages.mean()) / advantages.std()
advantages = torch.tensor(advantages).float()
action_batch = torch.tensor(action_batch).float()
returns = torch.tensor(returns).float()
# using discounted reward as target q-value to update critic
update_critic(state_batch, returns)
update_actor(state_batch, action_batch, advantages)
episode_score /= episode
print('last_score {:5f}, steps {}, ({:2f} sec/eps)'.
format(episode_score, len(memory), time.perf_counter() - start_time))
avg_score_plot.append(avg_score_plot[-1] * 0.99 + episode_score * 0.01)
last_score_plot.append(episode_score)
drawnow(draw_fig)
env.close()
if __name__ == '__main__':
main()
plt.pause(0)