-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrpo_mtcar.py
325 lines (241 loc) · 10.4 KB
/
trpo_mtcar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import argparse
import gym
import time
import numpy as np
import scipy.optimize as opt
import torch
import torch.nn as nn
import torch.nn.functional as F
from drawnow import drawnow
import matplotlib.pyplot as plt
last_score_plot = [-100]
avg_score_plot = [-100]
def draw_fig():
plt.title('reward')
plt.plot(last_score_plot, '-')
plt.plot(avg_score_plot, 'r-')
parser = argparse.ArgumentParser(description='PyTorch TRPO solution of MountainCarContinuous-v0')
parser.add_argument('--gamma', type=float, default=0.995)
parser.add_argument('--gae_lambda', type=float, default=0.97)
parser.add_argument('--critic_wd', type=float, default=1e-3)
parser.add_argument('--max_kl', type=int, default=1e-2)
parser.add_argument('--damping', type=int, default=1e-1)
parser.add_argument('--batch_size', type=int, default=10000)
parser.add_argument('--max_episode', type=int, default=100)
cfg = parser.parse_args()
class running_state:
def __init__(self, state):
self.len = 1
self.running_mean = state
self.running_std = state ** 2
def update(self, state):
self.len += 1
old_mean = self.running_mean.copy()
self.running_mean[...] = old_mean + (state - old_mean) / self.len
self.running_std[...] = self.running_std + (state - old_mean) * (state - self.running_mean)
def mean(self):
return self.running_mean
def std(self):
return np.sqrt(self.running_std / (self.len - 1))
def apply_flat_params(model, flat_params):
prev_ind = 0
for param in model.parameters():
flat_size = int(np.prod(list(param.size())))
param.data.copy_(flat_params[prev_ind:prev_ind + flat_size].view(param.size()))
prev_ind += flat_size
# ------------------------------------Critic-------------------------------------------
class Critic(nn.Module):
def __init__(self):
super(Critic, self).__init__()
self.fc1 = nn.Linear(2, 64)
self.fc2 = nn.Linear(64, 64)
self.fc_out = nn.Linear(64, 1)
def forward(self, x):
out = F.tanh(self.fc1(x))
out = F.tanh(self.fc2(out))
state_value = self.fc_out(out)
return state_value.squeeze()
def get_state_value(state):
state_value = critic(state)
return state_value
# given the states and targets, calculate critic loss under different critic parameters
def critic_loss_fn(states, targets):
def loss_fn(flat_params):
apply_flat_params(critic, torch.tensor(flat_params))
critic.zero_grad()
state_values = critic(states)
critic_loss = F.mse_loss(state_values, targets)
# weight decay
for param in critic.parameters():
critic_loss += torch.sum(param ** 2) * cfg.critic_wd
critic_loss.backward()
critic_loss = critic_loss.detach().cpu().double().numpy()
loss_grad_flat = torch.cat([param.grad.view(-1) for param in critic.parameters()])
loss_grad_flat = loss_grad_flat.detach().cpu().double().numpy()
return critic_loss, loss_grad_flat
return loss_fn
def update_critic(states, targets):
critic_params_flat = torch.cat([param.data.view(-1) for param in critic.parameters()])
# optimize using the L-BFGS algorithm
flat_params, _, opt_info = \
opt.fmin_l_bfgs_b(critic_loss_fn(states, targets), critic_params_flat.cpu().double().numpy(), maxiter=25)
apply_flat_params(critic, torch.Tensor(flat_params))
# -------------------------------------Actor-------------------------------------------
class Actor(nn.Module):
def __init__(self):
super(Actor, self).__init__()
self.fc1 = nn.Linear(2, 64)
self.fc2 = nn.Linear(64, 64)
self.fc_out = nn.Linear(64, 1)
self.action_sigma = nn.Parameter(torch.ones(1, 1))
def forward(self, x):
x = F.tanh(self.fc1(x))
x = F.tanh(self.fc2(x))
action_mu = self.fc_out(x)
return action_mu.squeeze(), self.action_sigma.expand_as(action_mu).squeeze()
def get_action(state):
action_mu, action_sigma = actor(state)
action_dist = torch.distributions.Normal(action_mu, action_sigma)
action = action_dist.sample()
return action.item()
# given the states, actions, last_log_probs and advantages,
# calculate actor loss (policy gradient with importance sampling) under different actor parameters
def actor_loss_fn(states, actions, last_log_probs, advantages):
def loss_fn(flat_params=None):
if flat_params is not None:
apply_flat_params(actor, flat_params)
action_mus, action_sigmas = actor(states)
action_dist = torch.distributions.Normal(action_mus, action_sigmas)
action_log_probs = action_dist.log_prob(actions)
action_loss = torch.mean(-advantages * torch.exp(action_log_probs - last_log_probs))
return action_loss
return loss_fn
# the kl divergence will always be 0, but the 2nd order gradients are non-zero
def get_kl_divergence(states):
action_mus, action_sigmas = actor(states)
fixed_mus, fixed_sigmas = action_mus.detach(), action_sigmas.detach()
kl_divergence = torch.log(action_sigmas / fixed_sigmas) + \
(fixed_sigmas ** 2 + (fixed_mus - action_mus) ** 2) / (2.0 * action_sigmas ** 2) - 0.5
return torch.mean(kl_divergence)
def Hessian_vector_product(states, vector):
kl_div = get_kl_divergence(states)
kl_grads = torch.autograd.grad(kl_div, actor.parameters(), create_graph=True)
kl_grad_flat = torch.cat([grad.view(-1) for grad in kl_grads])
kl_grad_vec_prod = kl_grad_flat.dot(vector)
hess_vec_prod = torch.autograd.grad(kl_grad_vec_prod, actor.parameters())
hess_vec_prod_flat = torch.cat([grad.contiguous().view(-1) for grad in hess_vec_prod]).data
return hess_vec_prod_flat + vector * cfg.damping
def conjugate_gradients(states, loss_grad, nsteps, max_error=1e-10):
x = torch.zeros(loss_grad.size()).cuda()
r = -loss_grad.clone()
p = -loss_grad.clone()
rr = r.dot(r)
for i in range(nsteps):
Ap = Hessian_vector_product(states, p)
alpha = rr / p.dot(Ap)
x += alpha * p
r -= alpha * Ap
new_rr = r.dot(r)
beta = new_rr / rr
p = r + beta * p
rr = new_rr
if rr < max_error:
break
return x
def linesearch(actor_loss_fn, params_flat, fullstep, expected_improve_rate, max_decay_steps=10, accept_ratio=0.1):
loss = actor_loss_fn().item()
print("loss before: %.5f" % loss)
for step in 0.5 ** np.arange(max_decay_steps):
params_new = params_flat + (step * fullstep).cuda()
loss_new = actor_loss_fn(params_new).item()
actual_improve = loss - loss_new
expected_improve = expected_improve_rate * step
ratio = actual_improve / expected_improve
print("a: %.5f\te: %.5f\tr: %.5f" % (actual_improve, expected_improve.item(), ratio.item()))
if ratio > accept_ratio and actual_improve > 0:
print("loss after: %.5f" % loss_new)
return True, params_new
return False, params_flat
def update_actor(states, actions, last_log_probs, advantages):
loss_fn = actor_loss_fn(states, actions, last_log_probs, advantages)
loss = loss_fn()
grads = torch.autograd.grad(loss, actor.parameters())
loss_grad_flat = torch.cat([grad.view(-1) for grad in grads]).detach()
step_direction = conjugate_gradients(states, loss_grad_flat, nsteps=10)
# maximum step size
beta = torch.sqrt(2 * cfg.max_kl / step_direction.dot(Hessian_vector_product(states, step_direction))).item()
fullstep = step_direction * beta
neggdotstepdir = -loss_grad_flat.dot(step_direction)
print("lagrange multiplier: %.5f \t grad_norm: %.5f" % (beta, loss_grad_flat.norm().item()))
params_flat = torch.cat([param.data.view(-1) for param in actor.parameters()])
success, params_new = linesearch(loss_fn, params_flat, fullstep, neggdotstepdir / beta)
apply_flat_params(actor, params_new)
return loss.item()
# --------------------------------------Training---------------------------------------
env = gym.make('MountainCarContinuous-v0')
actor = Actor().cuda()
critic = Critic().cuda()
def main():
state = env.reset()
state_stat = running_state(state)
for i in range(cfg.max_episode):
start_time = time.perf_counter()
episode_score = 0
episode = 0
memory = []
while len(memory) < cfg.batch_size:
episode += 1
state = env.reset()
state_stat.update(state)
state = np.clip((state - state_stat.mean()) / (state_stat.std() + 1e-6), -10., 10.)
for s in range(1000):
action = get_action(torch.tensor(state).float().cuda()[None, :])
next_state, reward, done, _ = env.step([action])
state_stat.update(next_state)
next_state = np.clip((next_state - state_stat.mean()) / (state_stat.std() + 1e-6), -10., 10.)
memory.append([state, action, reward, next_state, done])
state = next_state
episode_score += reward
if done:
break
state_batch, \
action_batch, \
reward_batch, \
next_state_batch, \
done_batch = map(lambda x: np.array(x).astype(np.float32), zip(*memory))
state_batch = torch.tensor(state_batch).float().cuda()
values = get_state_value(state_batch).detach().cpu().numpy()
returns = np.zeros(action_batch.shape)
deltas = np.zeros(action_batch.shape)
advantages = np.zeros(action_batch.shape)
prev_return = 0
prev_value = 0
prev_advantage = 0
for i in reversed(range(reward_batch.shape[0])):
returns[i] = reward_batch[i] + cfg.gamma * prev_return * (1 - done_batch[i])
# generalized advantage estimation
deltas[i] = reward_batch[i] + cfg.gamma * prev_value * (1 - done_batch[i]) - values[i]
advantages[i] = deltas[i] + cfg.gamma * cfg.gae_lambda * prev_advantage * (1 - done_batch[i])
prev_return = returns[i]
prev_value = values[i]
prev_advantage = advantages[i]
advantages = (advantages - advantages.mean()) / advantages.std()
advantages = torch.tensor(advantages).float().cuda()
action_batch = torch.tensor(action_batch).float().cuda()
returns = torch.tensor(returns).float().cuda()
# using discounted reward as target q-value to update critic
update_critic(state_batch, returns)
action_mus, action_sigmas = actor(state_batch)
action_dist = torch.distributions.Normal(action_mus, action_sigmas)
action_log_probs = action_dist.log_prob(action_batch).detach()
update_actor(state_batch, action_batch, action_log_probs, advantages)
episode_score /= episode
print('last_score {:5f}, steps {}, ({:2f} sec/eps)'.
format(episode_score, len(memory), time.perf_counter() - start_time))
avg_score_plot.append(avg_score_plot[-1] * 0.99 + episode_score * 0.01)
last_score_plot.append(episode_score)
drawnow(draw_fig)
env.close()
if __name__ == '__main__':
main()
plt.pause(0)