-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathimgnet_train_eval.py
183 lines (145 loc) · 6.64 KB
/
imgnet_train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import time
import argparse
from tqdm import tqdm
from PIL import ImageFile
from datetime import datetime
from contextlib import ExitStack
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torchvision.datasets as datasets
from nets.imgnet_vgg import vgg16
from nets.imgnet_alexnet import alexnet
from nets.imgnet_resnet import resnet18, resnet34, resnet50
from utils.utils import DisablePrint
from utils.summary import SummaryWriter
from utils.preprocessing import imgnet_transform
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.backends.cudnn.benchmark = True
# Training settings
parser = argparse.ArgumentParser(description='classification_baselines')
parser.add_argument('--dist', action='store_true')
parser.add_argument('--local_rank', type=int, default=0)
parser.add_argument('--root_dir', type=str, default='./')
parser.add_argument('--data_dir', type=str, default='./data')
parser.add_argument('--log_name', type=str, default='alexnet_baseline')
parser.add_argument('--pretrain', action='store_true', default=False)
parser.add_argument('--pretrain_dir', type=str, default='./ckpt/')
parser.add_argument('--lr', type=float, default=0.1)
parser.add_argument('--wd', type=float, default=5e-4)
parser.add_argument('--train_batch_size', type=int, default=256)
parser.add_argument('--test_batch_size', type=int, default=200)
parser.add_argument('--max_epochs', type=int, default=100)
parser.add_argument('--log_interval', type=int, default=10)
parser.add_argument('--gpus', type=str, default='0')
parser.add_argument('--num_workers', type=int, default=20)
cfg = parser.parse_args()
cfg.log_dir = os.path.join(cfg.root_dir, 'logs', cfg.log_name)
cfg.ckpt_dir = os.path.join(cfg.root_dir, 'ckpt', cfg.log_name)
os.makedirs(cfg.log_dir, exist_ok=True)
os.makedirs(cfg.ckpt_dir, exist_ok=True)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = cfg.gpus
def main():
num_gpus = torch.cuda.device_count()
if cfg.dist:
device = torch.device('cuda:%d' % cfg.local_rank)
torch.cuda.set_device(cfg.local_rank)
dist.init_process_group(backend='nccl', init_method='env://',
world_size=num_gpus, rank=cfg.local_rank)
else:
device = torch.device('cuda')
print('==> Preparing data ...')
traindir = os.path.join(cfg.data_dir, 'train')
train_dataset = datasets.ImageFolder(traindir, imgnet_transform(is_training=True))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
num_replicas=num_gpus,
rank=cfg.local_rank)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=cfg.train_batch_size // num_gpus
if cfg.dist else cfg.train_batch_size,
shuffle=not cfg.dist,
num_workers=cfg.num_workers,
sampler=train_sampler if cfg.dist else None,
pin_memory=True)
evaldir = os.path.join(cfg.data_dir, 'val')
val_dataset = datasets.ImageFolder(evaldir, imgnet_transform(is_training=False))
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=cfg.test_batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True)
# create model
print('==> Building model ...')
model = resnet50()
model = model.to(device)
if cfg.dist:
model = nn.parallel.DistributedDataParallel(model,
device_ids=[cfg.local_rank, ],
output_device=cfg.local_rank)
else:
model = torch.nn.DataParallel(model)
optimizer = torch.optim.SGD(model.parameters(), cfg.lr, momentum=0.9, weight_decay=cfg.wd)
lr_schedulr = optim.lr_scheduler.MultiStepLR(optimizer, [30, 60, 90], 0.1)
criterion = torch.nn.CrossEntropyLoss()
summary_writer = SummaryWriter(cfg.log_dir)
def train(epoch):
# switch to train mode
model.train()
start_time = time.time()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if cfg.local_rank == 0 and batch_idx % cfg.log_interval == 0:
step = len(train_loader) * epoch + batch_idx
duration = time.time() - start_time
print('%s epoch: %d step: %d cls_loss= %.5f (%d samples/sec)' %
(datetime.now(), epoch, batch_idx, loss.item(),
cfg.train_batch_size * cfg.log_interval / duration))
start_time = time.time()
summary_writer.add_scalar('cls_loss', loss.item(), step)
summary_writer.add_scalar('learning rate', optimizer.param_groups[0]['lr'], step)
def validate(epoch):
# switch to evaluate mode
model.eval()
top1 = 0
top5 = 0
with torch.no_grad():
for i, (inputs, targets) in tqdm(enumerate(val_loader)):
inputs, targets = inputs.to(device), targets.to(device)
# compute output
output = model(inputs)
# measure accuracy and record loss
_, pred = output.data.topk(5, dim=1, largest=True, sorted=True)
pred = pred.t()
correct = pred.eq(targets.view(1, -1).expand_as(pred))
top1 += correct[:1].view(-1).float().sum(0, keepdim=True).item()
top5 += correct[:5].view(-1).float().sum(0, keepdim=True).item()
top1 *= 100 / len(val_dataset)
top5 *= 100 / len(val_dataset)
print('%s Precision@1 ==> %.2f%% Precision@1: %.2f%%\n' % (datetime.now(), top1, top5))
summary_writer.add_scalar('Precision@1', top1, epoch)
summary_writer.add_scalar('Precision@5', top5, epoch)
return
for epoch in range(cfg.max_epochs):
train_sampler.set_epoch(epoch)
train(epoch)
validate(epoch)
lr_schedulr.step(epoch)
if cfg.local_rank == 0:
torch.save(model.state_dict(), os.path.join(cfg.ckpt_dir, 'checkpoint.t7'))
print('checkpoint saved to %s !' % os.path.join(cfg.ckpt_dir, 'checkpoint.t7'))
summary_writer.close()
if __name__ == '__main__':
with ExitStack() as stack:
if cfg.local_rank != 0:
stack.enter_context(DisablePrint())
main()