-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbk_PositionManager.h
323 lines (288 loc) · 15.1 KB
/
bk_PositionManager.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#ifndef POSITION_MANAGER_H
#define POSITION_MANAGER_H
#include "MyController.h"
#include <iostream>
#include <vector>
#include <cmath>
#include <limits>
#include <ctime>
class PositionManager {
public:
// Constructor
explicit PositionManager(MyController& controller, MyGpio& homeLimitSwitch, MyGpio& extendLimitSwitch, float maxSpeed, float cruisingEndPosition, float cruisingReverseEndPosition, size_t stepsToAccelerate, size_t decelerationSteps, struct timespec req)
: controller(controller), homeLimitSwitch(homeLimitSwitch), extendLimitSwitch(extendLimitSwitch), maxSpeed(maxSpeed), cruisingEndPosition(cruisingEndPosition), cruisingReverseEndPosition(cruisingReverseEndPosition),
stepsToAccelerate(stepsToAccelerate), decelerationSteps(decelerationSteps), req(req) {}
// Motor control functions
inline void performAcceleration(float& commandedPosition, float& currentPosition);
inline void performCruising(float& commandedPosition, float& currentPosition);
inline void performDeceleration(float& commandedPosition, float& currentPosition);
inline void performAccelerationReverse(float& commandedPosition, float& currentPosition);
inline void performCruisingReverse(float& commandedPosition, float& currentPosition);
inline void performDecelerationReverse(float& commandedPosition, float& currentPosition);
inline void holdPosition(float position);
inline void holdPositionDuration(float position, float duration);
inline void holdPositionNan();
inline void holdPositionNanDuration(float duration);
inline bool homing(float& commandedPosition, float& currentPosition);
inline float tripleQuery();
// Accessor for torque data
inline const std::vector<float>& getTorques() const { return torques; }
private:
MyController& controller;
float maxSpeed;
float cruisingEndPosition;
float cruisingReverseEndPosition;
size_t stepsToAccelerate;
size_t decelerationSteps;
struct timespec req;
std::vector<float> torques;
MyGpio& homeLimitSwitch;
MyGpio& extendLimitSwitch;
};
///////////////////////////////////////////////////////////////////////////////////////////////////////
// ACCELERATION
void PositionManager::performAcceleration(float& commandedPosition, float& currentPosition) {
std::vector<float> accelPositions;
accelPositions.push_back(currentPosition); // Assuming currentPosition is rezeroed at 500.0
float currentVelocity = 0.0f;
float accelerationPerStep = -maxSpeed / stepsToAccelerate; // Negative for reverse direction
std::cout << "Acceleration Per Step: " << accelerationPerStep << std::endl;
for (int i = 1; i <= stepsToAccelerate; i++) {
currentVelocity += accelerationPerStep;
float newPosition = accelPositions.back() + currentVelocity;
accelPositions.push_back(newPosition);
std::cout << "CurrentVelocity: " << currentVelocity << "\tNewPosition: " << newPosition << std::endl;
}
for (size_t i = 0; i < accelPositions.size(); i++) {
commandedPosition = accelPositions[i];
controller.sendWriteCommand(commandedPosition, std::numeric_limits<float>::quiet_NaN());
nanosleep(&req, nullptr);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
torques.push_back(controller_state[2]);
}
std::cout << "Step: " << i << ", Target: " << accelPositions[i]
<< ", Actual: " << currentPosition << "\tVelocity" << controller_state[1] << "\tTorque" << controller_state[2] << std::endl;
}
}
// CRUISING
void PositionManager::performCruising(float& commandedPosition, float& currentPosition) {
float stableReverseVelocity = -maxSpeed; // Negative for reverse direction
while (currentPosition >= cruisingEndPosition) { // Assumes cruisingEndPosition is adjusted for reverse
commandedPosition += stableReverseVelocity;
controller.sendWriteCommand(commandedPosition, std::numeric_limits<float>::quiet_NaN());
nanosleep(&req, nullptr);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
torques.push_back(controller_state[2]);
}
std::cout << "Cruise target: " << commandedPosition << "\tActual: " << currentPosition << "\tVel" << controller_state[1] << "\tTor" << controller_state[2] << std::endl;
if (extendLimitSwitch.readValue() == 0) {
std::cout << "Button pressed, stopping at position: " << currentPosition << std::endl;
break;
}
}
}
// DECELERATION
void PositionManager::performDeceleration(float& commandedPosition, float& currentPosition) {
float stableReverseVelocity = -maxSpeed; // Start with the cruising reverse speed
float currentVelocity = stableReverseVelocity;
float decelerationRate = -stableReverseVelocity / decelerationSteps; // Negative for reverse direction
for (size_t step = 0; step < decelerationSteps; ++step) {
commandedPosition += currentVelocity;
controller.sendWriteCommand(commandedPosition, std::numeric_limits<float>::quiet_NaN());
nanosleep(&req, nullptr);
auto controller_state = controller.sendReadCommand();
currentVelocity -= decelerationRate; // Decrease the current reverse velocity
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
torques.push_back(controller_state[2]);
}
std::cout << "Decelerating, step " << step + 1 << ": Position = " << controller_state[0]
<< ": Velocity = " << controller_state[1] << "\tTorque" << controller_state[2] << std::endl;
if (currentVelocity >= 0) { // Check for stopping condition
std::cout << "Deceleration complete at step " << step + 1 << std::endl;
break;
}
if (extendLimitSwitch.readValue() == 0) {
std::cout << "Button pressed, stopping at position: " << currentPosition << std::endl;
break;
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////////
// ACCELERATION REVERSE
void PositionManager::performAccelerationReverse(float& commandedPosition, float& currentPosition) {
std::vector<float> accelPositions;
accelPositions.push_back(currentPosition);
float currentVelocity = 0.0f;
float accelerationPerStep = maxSpeed / stepsToAccelerate;
std::cout << "Acceleration Per Step: " << accelerationPerStep << std::endl;
for (int i = 1; i <= stepsToAccelerate; i++) {
currentVelocity += accelerationPerStep;
float newPosition = accelPositions.back() + currentVelocity;
accelPositions.push_back(newPosition);
std::cout << "Current Velocity: " << currentVelocity << "\tNew Position: " << newPosition << std::endl;
}
for (size_t i = 0; i < accelPositions.size(); i++) {
commandedPosition = accelPositions[i];
controller.sendWriteCommand(commandedPosition, std::numeric_limits<float>::quiet_NaN());
nanosleep(&req, nullptr);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
torques.push_back(controller_state[2]);
}
std::cout << "Step: " << i << ", Target: " << accelPositions[i]
<< ", Actual: " << currentPosition << "\tVelocity" << controller_state[1] << "\tTorque" << controller_state[2] << std::endl;
}
}
// CRUISING REVERSE
void PositionManager::performCruisingReverse(float& commandedPosition, float& currentPosition) {
float stableVelocity = maxSpeed;
while (currentPosition <= cruisingReverseEndPosition) {
commandedPosition += stableVelocity;
controller.sendWriteCommand(commandedPosition, std::numeric_limits<float>::quiet_NaN());
nanosleep(&req, nullptr);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
torques.push_back(controller_state[2]);
}
std::cout << "Cruising at position: " << currentPosition << "\tVelocity" << controller_state[1] << "\tTorque" << controller_state[2] << std::endl;
}
}
// DECELERATION REVERSE
void PositionManager::performDecelerationReverse(float& commandedPosition, float& currentPosition) {
float stableVelocity = maxSpeed;
float currentVelocity = stableVelocity;
float decelerationRate = stableVelocity / decelerationSteps;
for (size_t step = 0; step < decelerationSteps; ++step) {
commandedPosition += currentVelocity;
controller.sendWriteCommand(commandedPosition, std::numeric_limits<float>::quiet_NaN());
nanosleep(&req, nullptr);
auto controller_state = controller.sendReadCommand();
currentVelocity -= decelerationRate;
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
torques.push_back(controller_state[2]);
}
std::cout << "Decelerating, step " << step + 1 << ": Position = " << controller_state[0]
<< ": Velocity = " << controller_state[1] << "\tTorque" << controller_state[2] << std::endl;
if (currentVelocity <= 0) {
std::cout << "Deceleration complete at step " << step + 1 << std::endl;
break;
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////
// HOLD POSITION
void PositionManager::holdPosition(float position) {
struct timespec req = {0, 1200 * 1000};
controller.sendWriteCommand(position, 0.0);
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
torques.push_back(controller_state[2]);
}
//std::cout << "Position: " << controller_state[0] << " Velocity: " << controller_state[1] << " Torque: " << controller_state[2] << std::endl;
}
// HOLD POSITION DURATION
void PositionManager::holdPositionDuration(float position, float duration) {
long holdTime = static_cast<long>(duration * 1000000 / 1025);
struct timespec req = {0, 1200 * 1000};
for (long i = 0; i < holdTime; i++) {
controller.sendWriteCommand(position, 0.0);
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
torques.push_back(controller_state[2]);
}
//std::cout << "Position: " << controller_state[0] << " Velocity: " << controller_state[1] << " Torque: " << controller_state[2] << std::endl;
}
}
// HOLD POSITION NAN
void PositionManager::holdPositionNan() {
struct timespec req = {0, 1200 * 1000};
controller.sendWriteCommand(std::numeric_limits<float>::quiet_NaN(), 0.0);
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
torques.push_back(controller_state[2]);
}
//std::cout << "Position: " << controller_state[0] << " Velocity: " << controller_state[1] << " Torque: " << controller_state[2] << std::endl;
}
// HOLD POSITION NAN Duration
void PositionManager::holdPositionNanDuration(float duration) {
long holdTime = static_cast<long>(duration * 1000000 / 1025);
struct timespec req = {0, 1200 * 1000};
controller.sendWriteCommand(std::numeric_limits<float>::quiet_NaN(), 0.0);
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
torques.push_back(controller_state[2]);
}
//std::cout << "Position: " << controller_state[0] << " Velocity: " << controller_state[1] << " Torque: " << controller_state[2] << std::endl;
}
// HOMING
bool PositionManager::homing(float& commandedPosition, float& currentPosition) {
std::cout << "Starting Homing..." << std::endl;
controller.sendRezeroCommand(500.0); // sets the current position to 500.0
int index = 0;
struct timespec req = {0, 1200 * 1000};
while (true) {
controller.sendWriteCommand(std::numeric_limits<float>::quiet_NaN(), 4.5);
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
index++;
if (controller_state[0] >= 450 && controller_state[0] <= 550) {
currentPosition = controller_state[0];
//std::cout << "Current Position: " << controller_state[0] << " Velocity: " << controller_state[1] << " Torque: " << controller_state[2] << std::endl;
//torques.push_back(controller_state[2]);
if (index > 20) {
if (controller_state[2] >= 0.07) { // Check for torque limit indicating a stall or similar issue
std::cout << "High torque/stall detected, stopping at position: " << currentPosition << "at index" << index << std::endl;
//Move forward a little bit
for (int i = 0; i < 100; i++) {
controller.sendWriteCommand(std::numeric_limits<float>::quiet_NaN(), -4.5);
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
torques.push_back(controller_state[2]);
}
return false;
}
}
// Check if the button is pressed
if (homeLimitSwitch.readValue() == 0) {
std::cout << "Button pressed, stopping at position: " << currentPosition << std::endl;
break;
}
}
}
//Clean Up
controller.sendRezeroCommand(500.0); // sets the current position to 500.0
commandedPosition = 500.0f;
currentPosition = 500.0f;
std::cout << "HOMED" << std::endl;
return true;
} // End HOMING
// TRIPLE QUERY
float PositionManager::tripleQuery() {
std::cout << "Querying initial position..." << std::endl;
float initialPosition = 0.0f;
struct timespec req = {0, 900 * 1000};
for (int i = 0; i < 3; i++) {
controller.sendQueryCommand();
nanosleep(&req, NULL);
auto controller_state = controller.sendReadCommand();
std::cout << "Query " << i << " Position: " << controller_state[0] << std::endl; //remove
if (i == 2) { // Use only the last query result
initialPosition = controller_state[0]; // Assuming position is at index 0
}
}
std::cout << "Confirmed Initial Position: " << initialPosition << std::endl; //remove
return initialPosition;
}
#endif // POSITION_MANAGER_H