-
Notifications
You must be signed in to change notification settings - Fork 4
Feature/Generate_Low_Rank_Matrix_2 #18
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
Codecov Report
@@ Coverage Diff @@
## master #18 +/- ##
=========================================
Coverage 100.00% 100.00%
=========================================
Files 2 2
Lines 33 36 +3
=========================================
+ Hits 33 36 +3
Continue to review full report at Codecov.
|
src/sklearn.jl
Outdated
tail_strength = tail_strength, | ||
random_state = random_state) | ||
#return convert(features, labels) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Por que tá comentado?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
na verdade, esqueci de alterar ali na linha 265, mas o retorno da função low_level_matrix é único.
Returns:
X: array of shape [n_samples, n_features] (The matrix).
Então pelo que entendi não precisa aplicar o convert né? (ele também da um erro, se eu aplico)
MethodError: no method matching convert(::Float64, ::Float64)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Fiz a alteração lá, dei uma lida melhor pra entender. Mas n sei se está certo :(
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Nesse caso não. Ele não é um problema de classificação. Acho melhor retornar a matriz mesmo.
v2