Skip to content

A collection of Python libraries for data analysis and visualization, including NumPy, Pandas, Matplotlib, and Seaborn.

Notifications You must be signed in to change notification settings

AbdulRehmanBaig384/Python-Libaries

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

📊 Python Libraries for Data Analysis & Visualization

This repository contains essential Python libraries for data analysis and visualization, including NumPy, Pandas, Matplotlib, and Seaborn. These libraries help with numerical computations, data manipulation, and creating insightful visualizations.


📌 Table of Contents

📥 Installation

📚 Libraries Overview

📊 Usage Examples

⿡ NumPy

⿢ Pandas

⿣ Matplotlib

⿤ Seaborn


📥 Installation

To install these libraries, run the following command:

pip install numpy pandas matplotlib seaborn


📚 Libraries Overview

🔹 NumPy - High-performance multidimensional array computations.
🔹 Pandas - Data manipulation and analysis using DataFrames.
🔹 Matplotlib - Customizable visualizations and plots.
🔹 Seaborn - Advanced statistical data visualization built on Matplotlib.


📊 Usage Examples

⿡ NumPy - Numerical Computing

import numpy as np
arr = np.array([1, 2, 3, 4, 5])
print("NumPy Array:", arr)


⿢ Pandas - Data Manipulation

import pandas as pd
data = {'Name': ['Alice', 'Bob'], 'Age': [25, 30]}
df = pd.DataFrame(data)
print(df)


⿣ Matplotlib - Data Visualization

import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y = [10, 20, 25, 30, 50]
plt.plot(x, y, marker='o', linestyle='--', color='r')
plt.title("Sample Line Plot")
plt.xlabel("X-axis")
plt.ylabel("Y-axis")
plt.show()


⿤ Seaborn - Statistical Visualization

import seaborn as sns
import matplotlib.pyplot as plt
tips = sns.load_dataset('tips')
sns.scatterplot(x='total_bill', y='tip', data=tips, hue='sex', style='time')
plt.title("Seaborn Scatter Plot")
plt.show()


🤝 Contributing

🔥 Want to contribute? Follow these steps:

  1. Fork the repository.

  2. Clone it to your local machine.

  3. Create a new branch:

git checkout -b feature-branch

  1. Make improvements and commit changes.

  2. Push the branch and create a Pull Request (PR).

📢 We welcome all suggestions and contributions!


📜 License

This project is licensed under the MIT License – you are free to use and modify it.


🚀 Let's Learn and Build Together!

💡 This repository is designed to help you master data analysis and visualization. Keep exploring, experimenting, and sharing knowledge!

🔗 Follow for more updates & projects!

🔥 Happy Coding! 😊


About

A collection of Python libraries for data analysis and visualization, including NumPy, Pandas, Matplotlib, and Seaborn.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published