Bulding model with data set pima-indians-diabetes
1. pandas
2. numpy
3. Matplotlib
4. scikit-learn
4.1. LogisticRegression
4.2. KNeighborsClassifier
4.3. GaussianNB
4.4. SVC
4.5. LinearSVC
4.6. RandomForestClassifier
4.7. DecisionTreeRegressor
5. Backend: Flask
6. Frontend: Vanilla Javascript
git clone https://github.com/AlfonsoBallesteros/Diabetes_ML.git
python diabetes_predictor.py
open index.html
.
├── Backend
├── Builder
│ └── diabetes_predictor.ipynb
├── Dataset
│ ├── datos.csv
│ └── pima-indians-diabetes.csv
├── diabetes_predictor.py
├── Frontend
│ └── index.html
├── LICENSE
├── Models
│ ├── diabetes.model
│ └── scaler.scaler
├── README.md
├── readme.txt
└── Training
├── DataFrame.ipynb
├── diabetes_model_builder.ipynb
└── output.png
{ "NumTimesPrg": 1,
"PlGlcConc": 85,
"BloodP": 66,
"SkinThick": 29,
"TwoHourSerIns": 0,
"BMI": 26.6,
"DiPedFunc": 0.351,
"Age": 31
}
👤 Alfonso Ballesteros
- Twitter: @alfonsoballest4
- Github: @AlfonsoBallesteros
Contributions, issues and feature requests are welcome!
Feel free to check issues page.
Give a ⭐️ if this project helped you!
Copyright © 2019 Alfonso Ballesteros.
This project is MIT licensed.
- Tell others about this project 📢
- Invite a beer 🍺 to someone on the team.
- You give the thanks publicly 🤓.