-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.h
1064 lines (920 loc) · 40.6 KB
/
parser.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef AST_PARSER_H
#define AST_PARSER_H
#include <cstdio>
#include <functional>
#include <memory>
#include <algorithm>
#ifndef OCTO
#include "custom_quaternion.h"
#else
#include "custom_octonion.h"
#endif
struct ConstantNodeData {
QuaternionOrOctonion value;
};
struct VariableNodeData {
QuaternionOrOctonion* valuePtr;
};
struct ArrayAccessNodeData {
double* array;
uint32_t size;
const struct ASTNode* indexNode;
};
struct UnaryFunctionNodeData {
const struct ASTNode* operand;
QuaternionOrOctonion (*func)(const QuaternionOrOctonion&);
};
struct BinaryFunctionNodeData {
const struct ASTNode* operand1;
const struct ASTNode* operand2;
QuaternionOrOctonion (*func)(const QuaternionOrOctonion&, const QuaternionOrOctonion&);
};
struct TernaryFunctionNodeData {
const struct ASTNode* operand1;
const struct ASTNode* operand2;
const struct ASTNode* operand3;
QuaternionOrOctonion (*func)(const QuaternionOrOctonion&, const QuaternionOrOctonion&, const QuaternionOrOctonion&);
};
// AST Node structure with GPU-friendly qualifiers.
struct ASTNode {
enum NodeType {
CONSTANT,
VARIABLE,
ARRAY_ACCESS,
UNARY_FUNCTION,
BINARY_FUNCTION,
TERNARY_FUNCTION
} type;
void* data;
typedef QuaternionOrOctonion (*EvaluatorFunction)(const ASTNode* node);
EvaluatorFunction evaluator;
HOST_DEVICE ASTNode(NodeType t, void* d, EvaluatorFunction evalFunc)
: type(t), data(d), evaluator(evalFunc) {}
HOST_DEVICE QuaternionOrOctonion evaluate() const {
return evaluator(this);
}
};
// Evaluation Functions marked as __host__ __device__
HOST_DEVICE QuaternionOrOctonion evaluateConstantNode(const ASTNode* node) {
ConstantNodeData* data = static_cast<ConstantNodeData*>(node->data);
return data->value;
}
HOST_DEVICE QuaternionOrOctonion evaluateVariableNode(const ASTNode* node) {
const VariableNodeData* data = static_cast<const VariableNodeData*>(node->data);
return *(data->valuePtr);
}
HOST_DEVICE QuaternionOrOctonion evaluateArrayAccessNode(const ASTNode* node) {
ArrayAccessNodeData* data = static_cast<ArrayAccessNodeData*>(node->data);
// Use fabs (which is device friendly) for floating point absolute value.
uint32_t evaluatedIndex = static_cast<uint32_t>(fabs(data->indexNode->evaluate().real));
return (evaluatedIndex < data->size) ? QuaternionOrOctonion(data->array[evaluatedIndex]) : QuaternionOrOctonion(0);
}
HOST_DEVICE QuaternionOrOctonion evaluateUnaryFunctionNode(const ASTNode* node) {
UnaryFunctionNodeData* data = static_cast<UnaryFunctionNodeData*>(node->data);
return data->func(data->operand->evaluate());
}
HOST_DEVICE QuaternionOrOctonion evaluateBinaryFunctionNode(const ASTNode* node) {
BinaryFunctionNodeData* data = static_cast<BinaryFunctionNodeData*>(node->data);
return data->func(data->operand1->evaluate(), data->operand2->evaluate());
}
HOST_DEVICE QuaternionOrOctonion evaluateTernaryFunctionNode(const ASTNode* node) {
TernaryFunctionNodeData* data = static_cast<TernaryFunctionNodeData*>(node->data);
return data->func(data->operand1->evaluate(), data->operand2->evaluate(), data->operand3->evaluate());
}
// ------------------- Fixed-Size Stack Allocator Template -------------------
template <typename T, size_t BufferSize>
struct StackAllocator {
unsigned char buffer[BufferSize];
size_t offset;
HOST_DEVICE StackAllocator() : offset(0) {}
HOST_DEVICE T* allocate() {
size_t needed_size = sizeof(T);
if (offset + needed_size > BufferSize) {
return nullptr; // Allocation failed
}
void* ptr = buffer + offset;
offset += needed_size;
return reinterpret_cast<T*>(ptr);
}
HOST_DEVICE void reset() {
offset = 0;
}
};
// Define buffer sizes for each allocator
constexpr size_t AST_NODE_BUFFER_SIZE = 16384;
constexpr size_t CONSTANT_NODE_DATA_BUFFER_SIZE = 4096;
constexpr size_t VARIABLE_NODE_DATA_BUFFER_SIZE = 4096;
constexpr size_t ARRAY_ACCESS_NODE_DATA_BUFFER_SIZE = 4096;
constexpr size_t UNARY_FUNCTION_NODE_DATA_BUFFER_SIZE = 4096;
constexpr size_t BINARY_FUNCTION_NODE_DATA_BUFFER_SIZE = 4096;
constexpr size_t TERNARY_FUNCTION_NODE_DATA_BUFFER_SIZE = 4096;
constexpr int MAX_EXPR_SIZE = 512;
// ------------------- Node Creation Functions -------------------
HOST_DEVICE ASTNode* createConstantNode(
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE>& allocator,
StackAllocator<ConstantNodeData, CONSTANT_NODE_DATA_BUFFER_SIZE>& dataAllocator,
const QuaternionOrOctonion& val
) {
ConstantNodeData* data = dataAllocator.allocate();
if (!data) return nullptr;
data->value = val;
ASTNode* node = allocator.allocate();
if (!node) return nullptr;
return new (node) ASTNode(ASTNode::CONSTANT, data, evaluateConstantNode);
}
HOST_DEVICE ASTNode* createVariableNode(
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE>& allocator,
StackAllocator<VariableNodeData, VARIABLE_NODE_DATA_BUFFER_SIZE>& dataAllocator,
QuaternionOrOctonion* valuePtr
) {
VariableNodeData* data = dataAllocator.allocate();
if (!data) return nullptr;
data->valuePtr = valuePtr;
ASTNode* node = allocator.allocate();
if (!node) return nullptr;
return new (node) ASTNode(ASTNode::VARIABLE, data, evaluateVariableNode);
}
HOST_DEVICE ASTNode* createArrayAccessNode(
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE>& allocator,
StackAllocator<ArrayAccessNodeData, ARRAY_ACCESS_NODE_DATA_BUFFER_SIZE>& dataAllocator,
double* array, uint32_t size, ASTNode* indexNode
) {
ArrayAccessNodeData* data = dataAllocator.allocate();
if (!data) return nullptr;
data->array = array;
data->size = size;
data->indexNode = indexNode;
ASTNode* node = allocator.allocate();
if (!node) return nullptr;
return new (node) ASTNode(ASTNode::ARRAY_ACCESS, data, evaluateArrayAccessNode);
}
HOST_DEVICE ASTNode* createUnaryFunctionNode(
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE>& allocator,
StackAllocator<UnaryFunctionNodeData, UNARY_FUNCTION_NODE_DATA_BUFFER_SIZE>& dataAllocator,
ASTNode* operand, QuaternionOrOctonion (*func)(const QuaternionOrOctonion&)
) {
UnaryFunctionNodeData* data = dataAllocator.allocate();
if (!data) return nullptr;
data->operand = operand;
data->func = func;
ASTNode* node = allocator.allocate();
if (!node) return nullptr;
return new (node) ASTNode(ASTNode::UNARY_FUNCTION, data, evaluateUnaryFunctionNode);
}
HOST_DEVICE ASTNode* createBinaryFunctionNode(
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE>& allocator,
StackAllocator<BinaryFunctionNodeData, BINARY_FUNCTION_NODE_DATA_BUFFER_SIZE>& dataAllocator,
ASTNode* operand1, ASTNode* operand2, QuaternionOrOctonion (*func)(const QuaternionOrOctonion&, const QuaternionOrOctonion&)
) {
BinaryFunctionNodeData* data = dataAllocator.allocate();
if (!data) return nullptr;
data->operand1 = operand1;
data->operand2 = operand2;
data->func = func;
ASTNode* node = allocator.allocate();
if (!node) return nullptr;
return new (node) ASTNode(ASTNode::BINARY_FUNCTION, data, evaluateBinaryFunctionNode);
}
HOST_DEVICE ASTNode* createTernaryFunctionNode(
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE>& allocator,
StackAllocator<TernaryFunctionNodeData, TERNARY_FUNCTION_NODE_DATA_BUFFER_SIZE>& dataAllocator,
ASTNode* operand1, ASTNode* operand2, ASTNode* operand3,
QuaternionOrOctonion (*func)(const QuaternionOrOctonion&, const QuaternionOrOctonion&, const QuaternionOrOctonion&)
) {
TernaryFunctionNodeData* data = dataAllocator.allocate();
if (!data) return nullptr;
data->operand1 = operand1;
data->operand2 = operand2;
data->operand3 = operand3;
data->func = func;
ASTNode* node = allocator.allocate();
if (!node) return nullptr;
return new (node) ASTNode(ASTNode::TERNARY_FUNCTION, data, evaluateTernaryFunctionNode);
}
// ------------------- GPU-Friendly String Comparison -------------------
// A simple __host__ __device__ string comparison function.
HOST_DEVICE int my_strcmp(const char* s1, const char* s2) {
while(*s1 && (*s1 == *s2)) {
++s1;
++s2;
}
return *(unsigned char*)s1 - *(unsigned char*)s2;
}
// Example VariableEntry and ArrayEntry structures.
struct VariableEntry {
const char* name;
QuaternionOrOctonion* value;
};
struct ArrayEntry {
const char* name;
double* array;
uint32_t size;
};
// Find functions now accept the entry arrays and their counts.
HOST_DEVICE const VariableEntry* findVariable(const char* name, const VariableEntry* varEntries, size_t numVars) {
for (size_t i = 0; i < numVars; ++i) {
if (my_strcmp(varEntries[i].name, name) == 0) {
return &varEntries[i];
}
}
return nullptr;
}
HOST_DEVICE const ArrayEntry* findArray(const char* name, const ArrayEntry* arrEntries, size_t numArrays) {
for (size_t i = 0; i < numArrays; ++i) {
if (my_strcmp(arrEntries[i].name, name) == 0) {
return &arrEntries[i];
}
}
return nullptr;
}
class Parser {
private:
char expr[MAX_EXPR_SIZE];
size_t expr_size;
size_t pos;
VariableEntry* varEntries;
size_t numVars;
ArrayEntry* arrEntries;
size_t numArrays;
StackAllocator<ASTNode, AST_NODE_BUFFER_SIZE> nodeAllocator;
StackAllocator<ConstantNodeData, CONSTANT_NODE_DATA_BUFFER_SIZE> constantDataAllocator;
StackAllocator<VariableNodeData, VARIABLE_NODE_DATA_BUFFER_SIZE> variableDataAllocator;
StackAllocator<ArrayAccessNodeData, ARRAY_ACCESS_NODE_DATA_BUFFER_SIZE> arrayDataAllocator;
StackAllocator<UnaryFunctionNodeData, UNARY_FUNCTION_NODE_DATA_BUFFER_SIZE> unaryDataAllocator;
StackAllocator<BinaryFunctionNodeData, BINARY_FUNCTION_NODE_DATA_BUFFER_SIZE> binaryDataAllocator;
StackAllocator<TernaryFunctionNodeData, TERNARY_FUNCTION_NODE_DATA_BUFFER_SIZE> ternaryDataAllocator;
public:
HOST_DEVICE Parser(const char* expr, size_t expr_size,
VariableEntry* vars, size_t numVars,
ArrayEntry* arrays, size_t numArrays
)
: expr_size(expr_size), pos(0), varEntries(vars), numVars(numVars),
arrEntries(arrays), numArrays(numArrays)
{
size_t i = 0;
for (; i < expr_size && i < MAX_EXPR_SIZE - 1; i++) {
this->expr[i] = expr[i];
}
this->expr[i] = '\0';
}
HOST_DEVICE ASTNode* parse() {
return parseExpression();
}
private:
HOST_DEVICE static constexpr bool isImaginaryChar(const char c) {
#ifdef OCTO
return (c > 'h' && c < 'p');
#else
return (c > 'h' && c < 'l');
#endif
}
const char* varNames[10] = {"z", "c", "it", "v", "p", "f", "dif", "dx", "dy", "dz"};
const char* oVarNames[5] = {"pi", "e", "phi", "x", "y"};
ASTNode* error_zero = createConstantNode(nodeAllocator, constantDataAllocator, QuaternionOrOctonion(0.0));
HOST_DEVICE int my_strlen(const char* s) {
int len = 0;
while (s[len] != '\0') {
len++;
}
return len;
}
HOST_DEVICE bool startsWith(int posi, const char* token) {
int i = 0;
while (token[i] != '\0') {
if (expr[posi + i] == '\0' || expr[posi + i] != token[i])
return false;
i++;
}
return true;
}
HOST_DEVICE bool my_isdigit(char c) {
return (c > 47 && c < 58);
}
HOST_DEVICE DefaultType my_atof(const char* str) {
// Process optional sign.
int sign = 1;
if (*str == '-') {
sign = -1;
str++;
} else if (*str == '+') {
str++;
}
DefaultType result = 0.0;
// Process the integer part.
while (*str >= '0' && *str <= '9') {
result = result * 10.0 + (*str - '0');
str++;
}
// Process the fractional part.
if (*str == '.') {
str++;
DefaultType fraction = 0.0;
DefaultType divisor = 10.0;
while (*str >= '0' && *str <= '9') {
fraction += (*str - '0') / divisor;
divisor *= 10.0;
str++;
}
result += fraction;
}
// Process the exponent part if present (e or E).
if (*str == 'e' || *str == 'E') {
str++;
int expSign = 1;
if (*str == '-') {
expSign = -1;
str++;
} else if (*str == '+') {
str++;
}
int exponent = 0;
while (*str >= '0' && *str <= '9') {
exponent = exponent * 10 + (*str - '0');
str++;
}
DefaultType expMultiplier = 1.0;
// Compute 10^exponent by simple multiplication.
for (int i = 0; i < exponent; ++i) {
expMultiplier *= 10.0;
}
if (expSign == -1) {
result /= expMultiplier;
} else {
result *= expMultiplier;
}
}
return sign * result;
}
// Check if character is valid in an identifier (letter, digit, or underscore).
HOST_DEVICE bool isIdentifierChar(char c) {
return ((c > 64 && c < 91 ) || //A-Z
(c > 96 && c < 123 ) ); //a-z
}
HOST_DEVICE bool containsToken(const char* tokens[], int tokenCount, const char* target) {
for (int i = 0; i < tokenCount; ++i) {
if (my_strcmp(tokens[i], target) == 0)
return true;
}
return false;
}
// Check that the token found at position pos is a standalone token.
HOST_DEVICE bool isTokenBoundary(int posi, int tokenLen) {
// Left boundary: either pos==0 or previous char is not identifier.
if (posi > 0 && isIdentifierChar(expr[posi - 1])) {
return false;
}
// Right boundary: either token ends at '\0' or the next char is not identifier.
if (expr[posi + tokenLen] != '\0' && isIdentifierChar(expr[posi + tokenLen])) {
return false;
}
return true;
}
// Shift the expression to the right by 'shift' characters starting from pos.
// Returns false if there isn’t enough space.
HOST_DEVICE bool shiftRight(int posi, int shift) {
int len = my_strlen(expr);
if (len + shift >= MAX_EXPR_SIZE)
return false;
// Shift from the end (including '\0') to pos.
for (int i = len; i >= posi; i--) {
expr[i + shift] = expr[i];
}
return true;
}
// Shift the expression to the left by 'shift' characters starting from pos.
HOST_DEVICE void shiftLeft(int posi, int shift) {
int len = my_strlen(expr);
for (int i = posi; i <= len; i++) {
expr[i - shift] = expr[i];
}
}
HOST_DEVICE void eraseBeforePos(int posi) {
if (posi <= 0) return; // Nothing to erase
int len = my_strlen(expr);
int newIndex = 0;
// Shift everything from `pos` forward to the beginning of `expr`
for (int i = posi; i <= len; i++) { // Include `\0` at the end
expr[newIndex++] = expr[i];
}
}
HOST_DEVICE void replaceTokens(const char* tokens[], int numTokens) {
for (int t = 0; t < numTokens; t++) {
const char* token = tokens[t];
// Build the replacement string into rep.
char rep[128]; // Sufficient for "(" + token + "+0.000001)"
int rep_index = 0;
rep[rep_index++] = '(';
for (int i = 0; token[i] != '\0' && rep_index < 127; i++) {
rep[rep_index++] = token[i];
}
const char* suffix = "+0.000001";
for (int i = 0; suffix[i] != '\0' && rep_index < 127; i++) {
rep[rep_index++] = suffix[i];
}
if (rep_index < 127) rep[rep_index++] = ')';
rep[rep_index] = '\0';
// Calculate token length.
int tokenLen = 0;
while (token[tokenLen] != '\0') {
tokenLen++;
}
int repLen = rep_index;
// Create a temporary buffer to build the new expression.
char temp[MAX_EXPR_SIZE];
int dst = 0; // destination index for temp
int posi = 0; // source index for expr
while (expr[posi] != '\0' && dst < MAX_EXPR_SIZE - 1) {
if (startsWith(posi, token) && isTokenBoundary(posi, tokenLen)) {
// Check if there's enough space in temp.
if (dst + repLen >= MAX_EXPR_SIZE - 1) {
// Not enough space: break out or handle the error.
break;
}
// Copy the replacement string into temp.
for (int j = 0; rep[j] != '\0'; j++) {
temp[dst++] = rep[j];
}
posi += tokenLen;
} else {
temp[dst++] = expr[posi++];
}
}
temp[dst] = '\0';
// Copy the temporary result back to expr using a simple loop.
for (int i = 0; i < MAX_EXPR_SIZE - 1; i++) {
expr[i] = temp[i];
if (temp[i] == '\0') break;
}
expr[MAX_EXPR_SIZE - 1] = '\0'; // Ensure null termination.
}
}
HOST_DEVICE static constexpr unsigned int str2int(const char* str, int h = 0) {
return !str[h] ? 5381 : (str2int(str, h + 1) * 33) ^ static_cast<unsigned int>(str[h]);
}
HOST_DEVICE ASTNode* parseExpression() {
ASTNode* node = parseTerm();
while (pos < expr_size) {
switch (expr[pos]) {
case '+': {
++pos;
ASTNode* right = parseTerm();
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, right,
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a + b; }
);
break;
}
case '-': {
++pos;
ASTNode* right = parseTerm();
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, right,
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a - b; }
);
break;
}
default: return node;
}
}
return node;
}
HOST_DEVICE ASTNode* parseTerm() {
ASTNode* node = parseFactor();
while (pos < expr_size) {
switch (expr[pos]) {
case '*':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a * b; });
break;
case '/':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a / b; });
break;
case '%':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a % b; });
break;
case '^':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.pow(b); });
break;
case '=':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return QuaternionOrOctonion(a == b); });
break;
case '&':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return QuaternionOrOctonion(a.cosSim(b)); });
break;
case '>':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return QuaternionOrOctonion(a > b); });
break;
case '<':
++pos;
node = createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
node, parseFactor(),
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return QuaternionOrOctonion(a < b); });
break;
default:
return node;
}
}
return node;
}
HOST_DEVICE ASTNode* parseFactor() {
switch (expr[pos]) {
case '+':
++pos;
return parseFactor();
break;
case '-':
++pos;
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, parseFactor(),
[](const QuaternionOrOctonion& a) { return -a; });
break;
}
char name[128] = {0};
size_t nameIndex = 0;
const char exprPosBefore = expr[pos];
size_t tempPos = pos;
while (tempPos < expr_size && isIdentifierChar(expr[tempPos]) && nameIndex < sizeof(name) - 1) {
name[nameIndex++] = expr[tempPos++];
}
name[nameIndex] = '\0';
const char exprPos = expr[tempPos];
if ( tempPos < expr_size && exprPos == '(' && exprPosBefore != '(' ) {
pos = tempPos;
return parseFunction(name);
} else if ( containsToken(oVarNames, 5, name) || containsToken(varNames, 10, name) || exprPos == '[' ) {
pos = tempPos;
return parseVarOrArray(name);
} else if (my_isdigit(exprPosBefore) || exprPosBefore == '.' || isImaginaryChar(exprPosBefore) ) {
return parseNumber();
} else if (exprPos == '(') {
pos = tempPos;
++pos;
ASTNode* node = parseExpression();
if (expr[pos] != ')') return error_zero;
++pos;
return node;
}
return error_zero;
}
#ifdef OCTO
HOST_DEVICE ASTNode* parseNumber() {
char number[256];
int num_index = 0;
DefaultType realPart = 0.0, imagPart = 0.0, jPart = 0.0, kPart = 0.0, lPart = 0.0, mPart = 0.0, nPart = 0.0, oPart = 0.0;
char identifier = '\0';
char exprpos = expr[pos];
bool imag = isImaginaryChar(exprpos);
while (pos < expr_size && (my_isdigit(exprpos) || exprpos == '.' || imag)) {
if (imag) {
identifier = expr[pos++];
break;
} else {
number[num_index++] = expr[pos++];
}
exprpos = expr[pos];
imag = isImaginaryChar(exprpos);
}
number[num_index] = '\0';
// If no number was found, replace with "0.0" using a simple loop.
if (num_index == 0) {
const char* defaultStr = "0.0";
int i = 0;
while (defaultStr[i] != '\0' && i < (int)sizeof(number) - 1) {
number[i] = defaultStr[i];
i++;
}
number[i] = '\0';
}
const DefaultType parsedValue = (identifier != '\0' && my_strcmp(number, "0.0") == 0) ? 1.0 : my_atof(number);
switch (identifier) {
case 'i':
imagPart = parsedValue;
break;
case 'j':
jPart = parsedValue;
break;
case 'k':
kPart = parsedValue;
break;
case 'l':
lPart = parsedValue;
break;
case 'm':
mPart = parsedValue;
break;
case 'n':
nPart = parsedValue;
break;
case 'o':
oPart = parsedValue;
break;
default:
realPart = parsedValue;
break;
}
return createConstantNode(nodeAllocator, constantDataAllocator, QuaternionOrOctonion(realPart, imagPart, jPart, kPart, lPart, mPart, nPart, oPart));
}
#else
HOST_DEVICE ASTNode* parseNumber() {
char number[256];
int num_index = 0;
DefaultType realPart = 0.0, imagPart = 0.0, jPart = 0.0, kPart = 0.0;
char identifier = '\0';
char exprpos = expr[pos];
bool imag = isImaginaryChar(exprpos);
while (pos < expr_size && (my_isdigit(exprpos) || exprpos == '.' || imag)) {
if (imag) {
identifier = expr[pos++];
break;
} else {
number[num_index++] = expr[pos++];
}
exprpos = expr[pos];
imag = isImaginaryChar(exprpos);
}
number[num_index] = '\0';
// If no number was found, replace with "0.0" using a simple loop.
if (num_index == 0) {
const char* defaultStr = "0.0";
int i = 0;
while (defaultStr[i] != '\0' && i < (int)sizeof(number) - 1) {
number[i] = defaultStr[i];
i++;
}
number[i] = '\0';
}
const DefaultType parsedValue = (identifier != '\0' && my_strcmp(number, "0.0") == 0) ? 1.0 : my_atof(number);
switch (identifier) {
case 'i':
imagPart = parsedValue;
break;
case 'j':
jPart = parsedValue;
break;
case 'k':
kPart = parsedValue;
break;
default:
realPart = parsedValue;
break;
}
return createConstantNode(nodeAllocator, constantDataAllocator, QuaternionOrOctonion(realPart, imagPart, jPart, kPart));
}
#endif
HOST_DEVICE ASTNode* parseVarOrArray(const char* name) {
const VariableEntry* varEntry = findVariable(name, varEntries, numVars);
if (varEntry != nullptr) {
return createVariableNode(nodeAllocator, variableDataAllocator, varEntry->value);
}
// If not a plain variable, check if it is an array access.
if (pos < expr_size && expr[pos] == '[') {
const ArrayEntry* arrEntry = findArray(name, arrEntries, numArrays);
if (arrEntry != nullptr) {
++pos; // Skip the '[' character.
ASTNode* indexNode = parseExpression();
if (pos < expr_size && expr[pos] == ']') {
++pos; // Skip the ']' character.
return createArrayAccessNode(nodeAllocator, arrayDataAllocator, arrEntry->array, arrEntry->size, indexNode);
}
}
}
return error_zero;
}
// Helper for unary functions:
HOST_DEVICE ASTNode* parseUnaryFunction(unsigned int hash, ASTNode* arg, const size_t old_pos) {
switch (hash) {
case str2int("sqrt"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.sqrt(); });
case str2int("log"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.log(); });
case str2int("sin"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.sin(); });
case str2int("cos"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.cos(); });
case str2int("tan"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.tan(); });
case str2int("sinh"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.sinh(); });
case str2int("cosh"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.cosh(); });
case str2int("tanh"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.tanh(); });
case str2int("arg"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.arg()); });
case str2int("conj"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.conj()); });
case str2int("mag"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.mag()); });
case str2int("abs"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.abs(); });
case str2int("exp"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.exp(); });
case str2int("re"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.real); });
case str2int("im"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(0.0, a.imag, a.j, a.k); });
case str2int("i"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.imag); });
case str2int("j"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.j); });
case str2int("k"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return QuaternionOrOctonion(a.k); });
case str2int("round"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.round(); });
case str2int("sign"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.sign(); });
case str2int("gamma"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.gamma(); });
case str2int("zeta"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.zeta(); });
case str2int("airy"):
return createUnaryFunctionNode(nodeAllocator, unaryDataAllocator, arg,
[](const QuaternionOrOctonion& a) { return a.airy(); });
case str2int("diff"):
{
// Backup the current expression into old_expr using a simple loop.
char old_expr[MAX_EXPR_SIZE];
for (int i = 0; i < MAX_EXPR_SIZE; ++i) {
old_expr[i] = expr[i];
}
size_t n_pos = pos;
size_t old_expr_size = expr_size;
pos = old_pos;
eraseBeforePos(pos);
replaceTokens(varNames, 10);
expr_size = my_strlen(expr);
pos = 0;
ASTNode* arg2 = parseExpression();
// Restore the original expression from the backup.
for (int i = 0; i < MAX_EXPR_SIZE; ++i) {
expr[i] = old_expr[i];
}
pos = n_pos;
expr_size = old_expr_size;
return createBinaryFunctionNode(
nodeAllocator, binaryDataAllocator,
arg2, arg,
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return (a - b) / 1e-6; }
);
}
default:
return nullptr;
}
}
// Helper for binary functions:
HOST_DEVICE ASTNode* parseBinaryFunction(unsigned int hash, ASTNode* arg1, ASTNode* arg2) {
switch (hash) {
case str2int("logn"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.logn(b); });
case str2int("pow"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.pow(b); });
case str2int("root"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.root(b); });
case str2int("max"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.maximum(b); });
case str2int("min"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.minimum(b); });
case str2int("circle"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.circle(b); });
case str2int("square"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.square(b); });
case str2int("triangle"):
return createBinaryFunctionNode(nodeAllocator, binaryDataAllocator,
arg1, arg2, [](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b) { return a.triangle(b); });
default:
return nullptr;
}
}
// Helper for ternary functions:
HOST_DEVICE ASTNode* parseTernaryFunction(unsigned int hash, ASTNode* arg1, ASTNode* arg2, ASTNode* arg3) {
switch (hash) {
case str2int("if"):
return createTernaryFunctionNode(nodeAllocator, ternaryDataAllocator,
arg1, arg2, arg3,
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b, const QuaternionOrOctonion& c) {
return abs(a.real) > 1e-9 ? b : c;
});
#ifndef USE_CUDA
case str2int("rand"):
return createTernaryFunctionNode(nodeAllocator, ternaryDataAllocator,
arg1, arg2, arg3,
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b, const QuaternionOrOctonion& c) {
return a.generateRandom(b,c);
});
#endif
case str2int("rotate"):
return createTernaryFunctionNode(nodeAllocator, ternaryDataAllocator,
arg1, arg2, arg3,
[](const QuaternionOrOctonion& a, const QuaternionOrOctonion& b, const QuaternionOrOctonion& c) {
return a.rotate_in_circle(b, c);
});
case str2int("rotation"):