-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
144 lines (98 loc) · 4.65 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import cv2
import numpy as np
def primes(n):
"""Generate first n primes using Sieve of Eratosthenes."""
if n < 1:
return np.array([], dtype=np.float64)
# Estimate sieve size more accurately
if n <= 10:
limit = 30
else:
limit = int(n * (np.log(n) + np.log(np.log(n)))) # Better approximation
sieve = np.ones(limit, dtype=bool)
sieve[0:2] = False
sieve[4::2] = False # Mark even numbers >2
for start in range(3, int(np.sqrt(limit)) + 1, 2):
if sieve[start]:
sieve[start*start::start] = False
primes = np.nonzero(sieve)[0]
return primes[:n].astype(np.float64)
def bw_image(path, width, height):
"""Load image as grayscale and resize if needed."""
array = cv2.imread(path)
if array is None:
raise ValueError(f"Image not found or invalid: {path}")
if (array.shape[1], array.shape[0]) != (width, height):
array = cv2.resize(array, (width, height), interpolation=cv2.INTER_AREA)
return np.mean(array[..., :3], axis=2).reshape(-1).astype(np.float64)/255
def image_to_array(image_path, channel_return =False):
"""Convert image to RGB integer array."""
img = cv2.imread(image_path)
if img is None:
raise ValueError(f"Image Not Found: {image_path}")
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
array_image = img[..., :3].astype(np.int32) # Remove alpha channel if present
if channel_return :
return np.array(array_image)
# Combine RGB channels into single integer
return (array_image[..., 0] << 16) | (array_image[..., 1] << 8) | array_image[..., 2]
def get_top_colors(img_path, top_n, use_palette = True, levels=16):
def quantize_color(color, levels):
out = color.astype(np.float32)
factor = (levels - 1) / 255.0
inv_factor = 255.0 / (levels - 1)
out = np.rint(np.rint(out * factor) * inv_factor).astype(np.int32)
out = (out[..., 0] << 16) | (out[..., 1] << 8) | out[..., 2]
return out
if not use_palette:
grays = np.linspace(0, 255, num=top_n, dtype=np.int32)
return grays * 0x010101
if not (levels == 256) :
arr = image_to_array(img_path,True)
# Quantize all colors
quantized = quantize_color(arr, levels)
else:
quantized = image_to_array(img_path)
unique, counts = np.unique(quantized, return_counts=True)
return unique[np.argsort(-counts)[:top_n]]
def generate_gradient(arr, n_grad):
"""Generate color gradient between consecutive colors."""
n_grad += 2
if n_grad < 3:
return arr
r0, g0, b0 = (arr >> 16) & 0xFF, (arr >> 8) & 0xFF, arr & 0xFF
arr = np.roll(arr, -1)
r1, g1, b1 = (arr >> 16) & 0xFF, (arr >> 8) & 0xFF, arr & 0xFF
dr, dg, db = r1 - r0, g1 - g0, b1 - b0
steps = np.linspace(0, 1, n_grad - 1, endpoint=False)[:, np.newaxis]
r = (r0 + dr * steps).astype(np.int32)
g = (g0 + dg * steps).astype(np.int32)
b = (b0 + db * steps).astype(np.int32)
return ((r << 16) + (g << 8) + b).T.reshape(-1)
def palette_load(palette, gradient, top_colors=4, lake_palette=False, lake=False, use_palette=True, levels = 16):
"""Load color palettes with optional gradient generation."""
main_colors = get_top_colors(palette, top_colors, use_palette, levels)
if lake and lake_palette:
lake_colors = get_top_colors(lake_palette, top_colors, use_palette, levels)
return (
generate_gradient(main_colors, gradient).tolist(),
generate_gradient(lake_colors, gradient).tolist()
)
return generate_gradient(main_colors, gradient).tolist(), [0]
def create_image(data, filename):
"""Save image with optional upscaling for sandpile patterns."""
data = data.astype(np.uint8)
data = cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
if "sandpile" in filename:
data = cv2.resize(data, (data.shape[1]*4, data.shape[0]*4),
interpolation=cv2.INTER_NEAREST)
cv2.imwrite(f'{filename}.png', data)
def divide_in_squares(list_c, xmin, xmax, ymin, ymax):
"""Recalculate boundaries based on grid divisions."""
list_c = np.array(list_c) - [1, 1, 0]
for col, line, n_squares in list_c:
size_x = (xmax - xmin) / n_squares
size_y = (ymax - ymin) / n_squares
xmin, xmax = xmin + col * size_x, xmin + (col + 1) * size_x
ymin, ymax = ymin + line * size_y, ymin + (line + 1) * size_y
return xmin, xmax, ymin, ymax