Skip to content

CSaintos/NumberLearning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Numbers With Neural Networks

Number4

  • Using Jupyter Notebooks and the TensorFlow Library to create machine learning models for classifying handwritten digital images.
  • Uses MNIST dataset of handwritten digits.

3 Sets of 5 experiments

  1. First Set using raw (unchanged) data.
  2. Second Set using scaled data.
  3. Third Set using normalized data.

Each of the 5 experiments had the following characteristics (Control variables):

  • Categorical-Cross-Entropy loss function.
  • Adam optmizer.
  • 10 iterations (epochs).
  • 4 dense layered machine learning model.
  • Layer 1 (input layer) of 784 nodes.

For Each of the 5 experiments, these were the independent variables:

  • Experiment 1:
    • Layer 2: 4 nodes, linear activation function.
    • Layer 3: 4 nodes, linear activation function.
    • Layer 4: 10 nodes, linear activation function.
  • Experiment 2:
    • Layer 2: 4 nodes, relu activation function.
    • Layer 3: 4 nodes, relu activation function.
    • Layer 4: 10 nodes, softmax activation function.
  • Experiment 3:
    • Layer 2: 6 nodes, relu activation function.
    • Layer 3: 6 nodes, relu activation function.
    • Layer 4: 10 nodes, softmax activation function.
  • Experiment 4:
    • Layer 2: 10 nodes, relu activation function.
    • Layer 3: 10 nodes, relu activation function.
    • Layer 4: 10 nodes, softmax activation function.
  • Experiment 5:
    • Layer 2: 100 nodes, relu activation function.
    • Layer 3: 100 nodes, relu activation function.
    • Layer 4: 10 nodes, softmax activation function.

Conclusion

  • Normalized data with relu and softmax activation functions gave most accurate results.
  • Increasing the number of nodes at each layer improves accuracy only slightly.

About

Learning Numbers with Neural Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published