-
Notifications
You must be signed in to change notification settings - Fork 84
PyTorch Versions of TC1 and P1B2 Benchmarks #96
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
knangia04
wants to merge
2
commits into
ECP-CANDLE:develop
Choose a base branch
from
knangia04:develop
base: develop
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import os | ||
import sys | ||
|
||
import torch | ||
|
||
|
||
if True: | ||
print("Restricting #of GPUs to 1") | ||
os.environ["CUDA_VISIBLE_DEVICES"]="0" | ||
#os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2,3,4,5,6,7" | ||
#os.environ["CUDA_VISIBLE_DEVICES"]="0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15" | ||
|
||
file_path = os.path.dirname(os.path.realpath(__file__)) | ||
lib_path2 = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) | ||
sys.path.append(lib_path2) | ||
os.chdir(file_path) | ||
|
||
import p1b2 as bmk | ||
import candle | ||
from torch_deps.p1b2_pytorch_model import P1B2Model | ||
from torch_deps.random_seeding import seed_random_state | ||
|
||
np.set_printoptions(precision=4) | ||
|
||
def initialize_parameters(default_model = 'p1b2_default_model_pytorch.txt'): | ||
|
||
# Build benchmark object | ||
p1b2Bmk = bmk.BenchmarkP1B2(bmk.file_path, default_model, 'pytorch', | ||
prog='p1b2_baseline', desc='Train Classifier - Pilot 1 Benchmark 2') | ||
|
||
print("Created P1B2 benchmark") | ||
|
||
# Initialize parameters | ||
gParameters = candle.finalize_parameters(p1b2Bmk) | ||
#benchmark.logger.info('Params: {}'.format(gParameters)) | ||
print("Parameters initialized") | ||
|
||
return gParameters | ||
|
||
|
||
def run(params): | ||
|
||
args = candle.ArgumentStruct(**params) | ||
args.no_cuda = args.no_cuda if hasattr(args,'no_cuda') else False | ||
args.multi_gpu = args.multi_gpu if hasattr(args,'multi_gpu') else True | ||
args.max_num_batches = args.max_num_batches if hasattr(args,'max_num_batches') else 1000 | ||
args.dry_run = args.dry_run if hasattr(args,'dry_run') else False | ||
args.log_interval = args.log_interval if hasattr(args,'log_interval') else 10 | ||
|
||
|
||
seed = args.rng_seed | ||
candle.set_seed(seed) | ||
# Setting up random seed for reproducible and deterministic results | ||
seed_random_state(args.rng_seed) | ||
|
||
args.keras_defaults = candle.keras_default_config() | ||
|
||
# Construct extension to save validation results | ||
ext = bmk.extension_from_parameters(params, '.pytorch') | ||
|
||
candle.verify_path(params['save_path']) | ||
prefix = '{}{}'.format(params['save_path'], ext) | ||
logfile = params['logfile'] if params['logfile'] else prefix+'.log' | ||
candle.set_up_logger(logfile, bmk.logger, params['verbose']) | ||
bmk.logger.info('Params: {}'.format(params)) | ||
|
||
args.tensorboard_dir = "tb/{}".format(ext) | ||
args.logger = bmk.logger | ||
|
||
#Autosave model | ||
model_name = params['model_name'] | ||
args_filename = "{}.model.args".format(params['save_path']) | ||
args.model_autosave_filename = "{}.autosave.model.pth".format(params['save_path']) | ||
# CSV logging | ||
args.csv_filename = '{}{}_training.log'.format(params['save_path'], ext) | ||
|
||
# Computation device config (cuda or cpu) | ||
use_cuda = not args.no_cuda and torch.cuda.is_available() | ||
device = torch.device('cuda' if use_cuda else 'cpu') | ||
|
||
# save args to file | ||
import pickle | ||
args_file = open(args_filename, 'wb') | ||
pickle.dump(args, args_file) | ||
args_file.close() | ||
|
||
modelP1B2 = P1B2Model(args, use_cuda, device) | ||
|
||
#model.summary() | ||
#print(modelP1B2.p1b2_net) # Model summary | ||
bmk.logger.info('Model summary: {}'.format(modelP1B2.p1b2_net)) # Model summary | ||
|
||
modelP1B2.train() | ||
modelP1B2.print_final_stats() | ||
|
||
#Save model | ||
model_name = params['model_name'] | ||
model_filename = "{}.model_state_dict.pth".format(params['save_path']) | ||
if hasattr(modelP1B2.p1b2_net,'module'): | ||
# Saving the DataParallel model | ||
torch.save(modelP1B2.p1b2_net.module.state_dict(), model_filename) | ||
else: | ||
torch.save(modelP1B2.p1b2_net.state_dict(), model_filename) | ||
|
||
#reload args from file | ||
args_file = open(args_filename, 'rb') | ||
loaded_args = pickle.load(args_file) | ||
args_file.close() | ||
|
||
# load weights into new model | ||
loaded_modelP1B2 = P1B2Model(loaded_args) | ||
loaded_modelP1B2.p1b2_net.load_state_dict(torch.load(model_filename, map_location=torch.device('cpu'))) | ||
print("Loaded torch model from disk") | ||
|
||
# evaluate loaded model on test data | ||
loaded_modelP1B2.p1b2_net.eval() | ||
val_acc,val_loss = loaded_modelP1B2.validation(0) | ||
|
||
print("Model State Dict Validation loss: %5.2f" % (val_loss)) | ||
print("Model State Dict Validation accuracy: %5.2f%%" %(val_acc)) | ||
|
||
print('Test data: ') | ||
test_acc,test_loss = loaded_modelP1B2.test() | ||
|
||
print("Model State Dict Test loss: %5.2f" % (test_loss)) | ||
print("Model State Dict Test accuracy: %5.2f%%" %(test_acc)) | ||
|
||
|
||
def main(): | ||
|
||
gParameters = initialize_parameters() | ||
run(gParameters) | ||
|
||
if __name__ == '__main__': | ||
main() | ||
try: | ||
tmp = 1 | ||
except AttributeError: # theano does not have this function | ||
pass | ||
|
||
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
[Global_Params] | ||
knangia04 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
data_url = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B2/' | ||
train_data = 'P1B2.train.csv' | ||
test_data = 'P1B2.test.csv' | ||
model_name='p1b2' | ||
dense=[1024, 512, 256] | ||
batch_size=60 | ||
epochs=20 | ||
activation='sigmoid' | ||
out_activation='log_softmax' | ||
loss='nll' | ||
optimizer='rmsprop' | ||
learning_rate=0.001 | ||
scaling='minmax' | ||
dropout=0. | ||
classes=10 | ||
feature_subsample=0 | ||
reg_l2=0.00001 | ||
val_split=0.1 | ||
rng_seed=2017 | ||
initialization='glorot_uniform' | ||
save_path='save' | ||
shuffle = True | ||
|
||
# Miscellaneous settings ################################## | ||
# multi_gpu=True | ||
# no_cuda=True | ||
# rng_seed=0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
from __future__ import absolute_import | ||
|
||
import torch | ||
import torch.nn | ||
import torch.nn.init | ||
import torch.optim | ||
import torch.nn.functional as F | ||
|
||
from default_utils import set_seed as set_seed_defaultUtils | ||
|
||
def set_parallelism_threads(): # for compatibility | ||
pass | ||
|
||
def set_seed(seed): | ||
knangia04 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
""" Set the random number seed to the desired value | ||
|
||
Parameters | ||
---------- | ||
seed : integer | ||
Random number seed. | ||
""" | ||
|
||
set_seed_defaultUtils(seed) | ||
torch.manual_seed(seed) | ||
|
||
|
||
def get_function(name): | ||
mapping = {} | ||
|
||
# loss | ||
mapping['mse'] = torch.nn.MSELoss() | ||
mapping['binary_crossentropy'] = torch.nn.BCELoss() | ||
mapping['categorical_crossentropy'] = torch.nn.CrossEntropyLoss() | ||
mapping['smoothL1'] = torch.nn.SmoothL1Loss() | ||
|
||
mapped = mapping.get(name) | ||
if not mapped: | ||
raise Exception('No pytorch function found for "{}"'.format(name)) | ||
|
||
return mapped | ||
|
||
|
||
def build_activation(type, dim=1): | ||
|
||
# activation | ||
|
||
if type=='relu': | ||
return torch.nn.ReLU() | ||
elif type=='sigmoid': | ||
return torch.nn.Sigmoid() | ||
elif type=='tanh': | ||
return torch.nn.Tanh() | ||
elif type=='softmax': | ||
return torch.nn.Softmax(dim) | ||
elif type=='log_softmax': | ||
return torch.nn.LogSoftmax(dim) | ||
|
||
def build_optimizer(model, type, lr, kerasDefaults, trainable_only=True): | ||
|
||
if trainable_only: | ||
params = filter(lambda p: p.requires_grad, model.parameters()) | ||
else: | ||
params = model.parameters() | ||
|
||
#schedule = optimizers.optimizer.Schedule() # constant lr (equivalent to default keras setting) | ||
|
||
if type == 'sgd': | ||
return torch.optim.SGD(params, | ||
lr=lr, | ||
momentum=kerasDefaults['momentum_sgd'], | ||
nesterov=kerasDefaults['nesterov_sgd']) | ||
#schedule=schedule) | ||
|
||
elif type == 'rmsprop': | ||
return torch.optim.RMSprop(model.parameters(), | ||
lr=lr, | ||
alpha=kerasDefaults['rho'], | ||
eps=kerasDefaults['epsilon'], | ||
weight_decay=kerasDefaults['weight_decay']) | ||
#schedule=schedule) | ||
|
||
elif type == 'adagrad': | ||
return torch.optim.Adagrad(model.parameters(), | ||
lr=lr, | ||
eps=kerasDefaults['epsilon']) | ||
|
||
elif type == 'adadelta': | ||
return torch.optim.Adadelta(params, | ||
eps=kerasDefaults['epsilon'], | ||
rho=kerasDefaults['rho']) | ||
|
||
elif type == 'adam': | ||
return torch.optim.Adam(params, | ||
lr=lr, | ||
betas=[kerasDefaults['beta_1'], kerasDefaults['beta_2']], | ||
eps=kerasDefaults['epsilon']) | ||
|
||
|
||
|
||
def initialize(weights, type, kerasDefaults, seed=None, constant=0.): | ||
|
||
if type == 'constant': | ||
return torch.nn.init.constant_(weights, | ||
val=constant) | ||
|
||
elif type == 'uniform': | ||
return torch.nn.init.uniform(weights, | ||
a=kerasDefaults['minval_uniform'], | ||
b=kerasDefaults['maxval_uniform']) | ||
|
||
elif type == 'normal': | ||
return torch.nn.init.normal(weights, | ||
mean=kerasDefaults['mean_normal'], | ||
std=kerasDefaults['stddev_normal']) | ||
|
||
elif type == 'glorot_normal': # not quite Xavier | ||
return torch.nn.init.xavier_normal(weights) | ||
|
||
elif type == 'glorot_uniform': | ||
return torch.nn.init.xavier_uniform_(weights) | ||
|
||
elif type == 'he_normal': | ||
return torch.nn.init.kaiming_uniform(weights) | ||
|
||
|
||
def xent(y_true, y_pred): | ||
return F.cross_entropy(y_pred, y_true) | ||
|
||
|
||
def mse(y_true, y_pred): | ||
return F.mse_loss(y_pred, y_true) | ||
|
||
def build_loss(type, y_pred, y_true): | ||
|
||
if type=='categorical_crossentropy': | ||
return xent(y_true, y_pred) | ||
elif type=='mse': | ||
return mse(y_true, y_pred) | ||
elif type=='nll': | ||
return F.nll_loss(y_pred, y_true) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.