Skip to content

HMS-IAC/diffusion_microscopy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Microscopy Image Generation with Diffusion Models

This project implements a deep learning pipeline for generating microscopy images using diffusion models.

Project Structure

.
├── data/
│   ├── raw/           # Examples of original microscopy images
│   └── processed/     # Examples of preprocessed and augmented data
├── src/
│   ├── data/         # Data loading and preprocessing modules
│   ├── models/       # Model architecture definitions
│   ├── training/     # Training scripts and utilities
│   ├── utils/        # Helper functions and utilities
│   └── config/       # Configuration files
├── tests/            # Unit tests
├── notebooks/        # Jupyter notebooks for exploration
└── docs/            # Documentation

Setup

  1. Install uv (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh
  1. Create a virtual environment and install dependencies:
uv venv
source .venv/bin/activate  # On Unix/macOS
uv pip install -r requirements.txt

Usage

  1. Data Preparation:

    • Fetch data using the IDR API
    • Run preprocessing scripts from src/data/
  2. Training:

    • Configure training parameters in src/config/
    • Run training scripts from src/training/
  3. Evaluation:

    • Use notebooks in notebooks/ for visualization and analysis
    • Run evaluation scripts from src/training/

Requirements

  • Python 3.8+
  • PyTorch
  • NumPy
  • Matplotlib
  • Other dependencies listed in requirements.txt

License

[Your chosen license]

About

Diffusion models for microscopy image generation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages