This project implements a deep learning pipeline for generating microscopy images using diffusion models.
.
├── data/
│ ├── raw/ # Examples of original microscopy images
│ └── processed/ # Examples of preprocessed and augmented data
├── src/
│ ├── data/ # Data loading and preprocessing modules
│ ├── models/ # Model architecture definitions
│ ├── training/ # Training scripts and utilities
│ ├── utils/ # Helper functions and utilities
│ └── config/ # Configuration files
├── tests/ # Unit tests
├── notebooks/ # Jupyter notebooks for exploration
└── docs/ # Documentation
- Install uv (if not already installed):
curl -LsSf https://astral.sh/uv/install.sh | sh
- Create a virtual environment and install dependencies:
uv venv
source .venv/bin/activate # On Unix/macOS
uv pip install -r requirements.txt
-
Data Preparation:
- Fetch data using the IDR API
- Run preprocessing scripts from
src/data/
-
Training:
- Configure training parameters in
src/config/
- Run training scripts from
src/training/
- Configure training parameters in
-
Evaluation:
- Use notebooks in
notebooks/
for visualization and analysis - Run evaluation scripts from
src/training/
- Use notebooks in
- Python 3.8+
- PyTorch
- NumPy
- Matplotlib
- Other dependencies listed in
requirements.txt
[Your chosen license]