Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
[SilasElter] authored and [SilasElter] committed Feb 3, 2025
2 parents e8bdec4 + e503948 commit 7b2ddbe
Show file tree
Hide file tree
Showing 8 changed files with 24 additions and 24 deletions.
2 changes: 1 addition & 1 deletion exercise/fig/ex04/Fig_currentI1I2PeriodTask1.tex
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,6 @@
};
\end{axis}
\end{tikzpicture}
\caption{Display of the current $i_\mathrm{1}(t)$.}
\caption{Input and output currents.}
\label{fig:currentSecondarySideTask1}
\end{solutionfigure}
2 changes: 1 addition & 1 deletion exercise/fig/ex04/Fig_voltageTransistorUsPeriodTask1.tex
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@
};
\end{axis}
\end{tikzpicture}
\caption{Display of the voltage $u_\mathrm{T}(t)$ and $u_\mathrm{s}(t)$.}
\caption{Display of the voltages $u_\mathrm{T}(t)$ and $u_\mathrm{s}(t)$.}
\label{fig:voltageTransistorPeriodTask1}


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@
\node[black, fill=white, inner sep = 1pt, anchor = south] at (axis cs:0.55,200) {$U_{\mathrm{1}}=\SI{240}{\volt}$};
\end{axis}
\end{tikzpicture}
\caption{Voltage at transistor.}
\caption{Voltage at the transistor.}
\label{fig:ex04_VoltageAtTransistor}
\begin{tikzpicture}
\begin{axis}[
Expand Down
14 changes: 7 additions & 7 deletions exercise/tex/exercise04.tex
Original file line number Diff line number Diff line change
Expand Up @@ -65,17 +65,17 @@

\end{solutionblock}

\subtask{The input voltage is $U_\mathrm{1}=\SI{382}{\volt}$ at nominal load. Calculate and sketch the following voltage and current curves for this operating points over two cycle periods: $u_\mathrm{T}(t), u_\mathrm{s}(t), i_\mathrm{2}(t), i_\mathrm{1}(t)$. Here, $u_\mathrm{T}(t)$ is the transistor voltage and $u_\mathrm{s}(t)$ is the voltage on the secondary side of the transformer.}
\subtask{The input voltage is $U_\mathrm{1}=\SI{382}{\volt}$ at nominal load. Calculate and sketch the following voltage and current curves for this operating point over two cycle periods: $u_\mathrm{T}(t), u_\mathrm{s}(t), i_\mathrm{2}(t), i_\mathrm{1}(t)$. Here, $u_\mathrm{T}(t)$ is the transistor voltage and $u_\mathrm{s}(t)$ is the voltage on the secondary side of the transformer.}

\begin{solutionblock}
Because of a different input voltage, the duty cycle $D$ has changed:
Because of the different input voltage, the duty cycle $D$ has changed:
\begin{equation}
\Delta i_\mathrm{m,max}= \frac{T_\mathrm{s} \cdot U_1}{L_\mathrm{m}} = \frac{\frac{1}{\SI{50}{\kilo\hertz}}\cdot \SI{382}{\volt}}{\SI{760}{\micro\henry}}=\SI{10.05}{\ampere}.
\end{equation}
\begin{equation}
D = \sqrt{\frac{2U_2\overline{i}_2}{U_1\Delta i_\mathrm{m,max}}} = \sqrt{\frac{2\cdot \SI{15}{\volt}\cdot\SI{30}{\watt}}{\SI{382}{\volt}\cdot\SI{15}{\volt}\cdot\SI{10.05}{\ampere}}} = 0.125.
\end{equation}
Trough this result $T_\mathrm{on}$ can be calculated as:
Based on this result, $T_\mathrm{on}$ can be calculated as:
\begin{equation}
T_\mathrm{on} = D T_\mathrm{s} = 0.125 \cdot \frac{1}{\SI{50}{\kilo\hertz}} = \SI {2.5}{\micro\s}.
\end{equation}
Expand Down Expand Up @@ -104,7 +104,7 @@
u_\mathrm{T} = \SI{382}{\volt} + \frac{60}{12}\cdot\SI{15}{\volt} = \SI{457}{\volt}.
\end{equation}
Because of the conducting diode, for the voltage $U_\mathrm{2}$ is following $U_\mathrm{2} = u_\mathrm{s} = \SI{15}{\volt}$.
The third interval is $T_\mathrm{on}+T'_\mathrm{off}$ < t < $T_\mathrm{s}$. In this interval the diode is not conducting and the transistor blocks. From this follows $u_\mathrm{T} = U_1$ and $u_\mathrm{s}=0$.
The third interval is $T_\mathrm{on}+T'_\mathrm{off} < t < T_\mathrm{s}$. In this interval the diode is not conducting and the transistor blocks. From this follows $u_\mathrm{T} = U_1$ and $u_\mathrm{s}=0$.
Looking at the current $i_\mathrm{1}(t)$ over the entire course, the current can only be present when the transistor is switched on. When the transistor is switched on, the current value rises to the peak value $\hat i_\mathrm{1}= \SI{1.257}{\ampere}$. Current $i_\mathrm{2}(t)$ is the discharge current of the secondary winding when the diode is conducting and the transistor blocks. The discharge current starts at the peak value of the secondary side $\hat i_\mathrm{2}= \SI{6.28}{\ampere}$.
\input{./fig/ex04/Fig_voltageTransistorUsPeriodTask1.tex}
\input{./fig/ex04/Fig_currentI1I2PeriodTask1.tex}
Expand Down Expand Up @@ -205,9 +205,9 @@

\subtask{Calculate the peak value $\hat{i}_\mathrm{m}$ of the magnetizing current $i_\mathrm{m}$.}
\begin{solutionblock}
The duty cycle is less than $0.5$, i.e. the magnetizing current $i_\mathrm{m}$ increase
The duty cycle is less than $0.5$, i.e., the magnetizing current $i_\mathrm{m}$ increase
while the transistors are active and decrease to $\SI{0}{\ampere}$ before the next period starts.
This means that
This leads to
\begin{equation}
\hat{i}_\mathrm{m}=\Delta i_\mathrm{m,max}= \frac{D \cdot U_\mathrm{1}}{L_\mathrm{m} \cdot f_\mathrm{s}} =
\frac{0.4615 \cdot \SI{325}{\volt}}{\SI{2}{\milli\henry} \cdot \SI{50}{\kilo\hertz}} = \SI{1.5}{\ampere}.
Expand Down Expand Up @@ -399,7 +399,7 @@
I_\mathrm{2}=P_\mathrm{2}/U_\mathrm{2}=\frac{\SI{125}{\watt}}{\SI{5}{\volt}}=\SI{25}{\ampere}
\label{eq:ex04ouputcurrent}.
\end{equation}
This is corresponds to the current at the primary side of
This corresponds to the current at the primary side of
\begin{equation}
I_\mathrm{2s}'=I_\mathrm{2}\frac{N_\mathrm{2}}{N_\mathrm{1}}.
\end{equation}
Expand Down
8 changes: 4 additions & 4 deletions exercise/tex/exercise05.tex
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
%% Task 1: B2U topology with capacitive filtering %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\task{B2U topology with capactive filtering}
\task{B2U topology with capacitive filtering}
An uncontrolled single-phase, two-pulse rectifier circuit with capacitive filtering
is shown in \autoref{fig:B2U_Topology_Cap_Filtering}.
All components, including the diodes, are assumed to be ideal. On the input side,
Expand Down Expand Up @@ -120,7 +120,7 @@
\input{fig/ex05/sFig_VoltageU2AndCurrenti1_ic}
\end{solutionblock}

\subtask{Calculate the currents $i_\mathrm{1}(\omega t)$ and $i_\mathrm{C}(\omega t)$ and and add them to the previous plot.}
\subtask{Calculate the currents $i_\mathrm{1}(\omega t)$ and $i_\mathrm{C}(\omega t)$ and add them to the previous plot.}
\begin{solutionblock}
Two cases are to consider for the currents of $i_\mathrm{1}(\omega t)$ and $i_\mathrm{C}(\omega t)$. If $\alpha<\omega t<\alpha+\beta$
and $\pi+\alpha<\omega t<\pi+\alpha+\beta$, the capacitor supplies the load current $I_{\mathrm{0}}$.
Expand Down Expand Up @@ -315,7 +315,7 @@
\end{equation}
\end{solutionblock}

\subtask{Complete the current curve for a switching frequency $f_\mathrm{s2} = \SI{2}{\kilo\hertz}$ and a inductance $L = \SI{5}{\milli\henry}$ in \autoref{fig:Current i_1 and control signal ex05}. Note: At the time $t =0$ is $i'=0$. The switch-on and switch-off times are determined by the control signal of the transistor $T$ and are summarized for the first 4 switching times in \autoref{tab:switching_times}.}
\subtask{Complete the current curve for a switching frequency $f_\mathrm{s2} = \SI{2}{\kilo\hertz}$ and an inductance $L = \SI{5}{\milli\henry}$ in \autoref{fig:Current i_1 and control signal ex05}. Note: At the time $t =0$ is $i'=0$. The switch-on and switch-off times are determined by the control signal of the transistor $T$ and are summarized for the first 4 switching times in \autoref{tab:switching_times}.}

\begin{table}[ht]
\centering
Expand Down Expand Up @@ -409,7 +409,7 @@
\begin{equation}
i_\mathrm{C}(t)=C \frac{\mathrm{d}u_\mathrm{c}}{\mathrm{d}t} = \frac{\Delta p_\mathrm{2}}{U_\mathrm{2}} = \frac{P_\mathrm{2}\cos(2\omega t)}{U_\mathrm{2}}.\label{eq:ex056currentic}
\end{equation}
The following follows from \eqref{eq:ex056currentic} for $U_\mathrm{C}$:
This follows from \eqref{eq:ex056currentic} for $U_\mathrm{C}$:
\begin{equation}
\frac{\mathrm{d}u_\mathrm{C}}{\mathrm{d}t} = \frac{P_\mathrm{2}\cos (2\omega t)}{C U_\mathrm{2}},
\end{equation}
Expand Down
12 changes: 5 additions & 7 deletions exercise/tex/exercise07.tex
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
i^\mathrm{(1)}_\mathrm{2}(t) = \frac{u^\mathrm{(1)}_\mathrm{2}(t) - u_{2\mathrm{i}}(t)}{j \omega_\mathrm{2} L},
\label{7.1.2:eq:i_2_fund}
\end{equation}
which can be representred in phasor as
which can be represented in phasor as
\begin{equation}
i^\mathrm{(1)}_\mathrm{2}(t) = \frac{\hat{u}^\mathrm{(1)}_\mathrm{2} e^{j \cdot 0} - \hat{u}_{2\mathrm{i}} e^{j \cdot \frac{\pi}{6}}}{j \omega_\mathrm{2} L} = \frac{\hat{u}^\mathrm{(1)}_\mathrm{2} - \hat{u}_{2\mathrm{i}} \cos(\frac{\pi}{6}) + j \hat{u}_{2\mathrm{i}} \sin(\frac{\pi}{6})}{j \omega_\mathrm{2} L}.
\label{7.1.2:eq:i_2_fund_phasor}
Expand Down Expand Up @@ -105,7 +105,7 @@

Hint: The current harmonics $i^{(k)}_\mathrm{2}(t)$ are free of any bias.}
\begin{solutionblock}
The harmonics $u^{(k)}_\mathrm{2}(t)$ can be calculated from the output voltage $u_\mathrm{2}(t)$ and the fundamnetal component $u^{(1)}_\mathrm{2}(t)$ with
The harmonics $u^{(k)}_\mathrm{2}(t)$ can be calculated from the output voltage $u_\mathrm{2}(t)$ and the fundamental component $u^{(1)}_\mathrm{2}(t)$ with
\begin{equation}
u^{(k)}_\mathrm{2}(t) = u_\mathrm{2}(t) - u^{(1)}_\mathrm{2}(t),
\label{7.1.2:eq:u_2_harm}
Expand Down Expand Up @@ -217,7 +217,7 @@
\end{cases}
\bigskip
\end{align*}
Sketch the switching states in the correct chronological order for one periode.
Sketch the switching states in the correct chronological order for one period.
Calculate and sketch the voltages $u_\mathrm{2a0}(t)$, $u_\mathrm{2b0}(t)$ and $u_\mathrm{2c0}(t)$
depending on these switching states.}
\begin{solutionblock}
Expand Down Expand Up @@ -266,8 +266,7 @@
This additional degree of freedom is applied at a higher switching frequency in order to reduce the amplitude of the
output voltage on average. In case of block switching, these switching states are not used, since
the switching only occurs twice per period. This results in the maximum possible voltage (square wave) at the output.
The voltages $u_\mathrm{2a0}(\mathrm{\omega t})$, $u_\mathrm{2b0}(\mathrm{\omega t})$, $u_\mathrm{2c0}(\mathrm{\omega t})$
,$u_\mathrm{2ab}(\mathrm{\omega t})$ and $u_\mathrm{2bc}(\mathrm{\omega t})$ are displayed in \autoref{sfig:voltage_u2a0_u2b0_u2c0}.
The voltages $u_\mathrm{2a0}(\mathrm{\omega t})$, $u_\mathrm{2b0}(\mathrm{\omega t})$, $u_\mathrm{2c0}(\mathrm{\omega t})$ ,$u_\mathrm{2ab}(\mathrm{\omega t})$ and $u_\mathrm{2bc}(\mathrm{\omega t})$ are displayed in \autoref{sfig:voltage_u2a0_u2b0_u2c0}.

\input{fig/ex07/sFig_Voltage_u2a0_u2b0_u2c0}
\end{solutionblock}
Expand Down Expand Up @@ -410,7 +409,7 @@
The amplitudes are depicted in \autoref{sfig:NormalizationToTheAmplitude}.
\input{fig/ex07/sFig_standardization_to_fudamental_freq.tex}
\FloatBarrier
The relation between fundamental und harmonic amplitude is calculated by
The relation between fundamental and harmonic amplitude is calculated by
\begin{equation}
\begin{split}
\frac{\hat{u}_\mathrm{2a0,1}}{\hat{u}_\mathrm{2a0,k}} &= \frac{1}{k} \\
Expand Down Expand Up @@ -456,7 +455,6 @@
Using the result for $\beta$ leads to
\begin{equation}
\gamma=\SI{180}{\degree}-\alpha-\beta = \SI{180}{\degree}-\SI{120}{\degree}-\SI{56.1}{\degree}= \SI{3.9}{\degree}.
\label{eq:Ex07T2_sin_beta}
\end{equation}
In \autoref{sfig:IllustrationForUsingSineTheorem} the triangle is depicted.
\input{fig/ex07/sFig_ trigonometric_approach_triangle.tex}
Expand Down
2 changes: 1 addition & 1 deletion lecture/main.ist
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
% makeindex style file created by the glossaries package
% for document 'main' on 2025-1-28
% for document 'main' on 2025-2-2
actual '?'
encap '|'
level '!'
Expand Down
6 changes: 4 additions & 2 deletions lecture/tex/Lecture03.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1197,6 +1197,7 @@ \subsection{Forward converter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Forward converter: demagnetization via negative input voltage}
\vspace{-0.3cm}
\begin{figure}
\begin{circuitikz}[]
%Asym. half-bridge
Expand All @@ -1216,7 +1217,7 @@ \subsection{Forward converter}
to [short, -o] (B)
(F) to [short,*-] ++(1,0) coordinate (I)
to [short] ++(1,0) coordinate (H)
(J) to [open,v^= $u_\mathrm{p}(t)\hspace{1.6cm}$, voltage = straight] (I);
(J) to [open,v_= $u_\mathrm{p}(t)$, voltage = straight] (I);
\draw let \p1 = (npn1.B) in node[anchor=east] at (\x1,\y1) {$T_1$};
\draw let \p1 = (npn2.B) in node[anchor=east] at (\x1,\y1) {$T_2$};

Expand Down Expand Up @@ -1319,6 +1320,7 @@ \subsection{Forward converter}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}
\frametitle{Forward converter: demagnetization via negative input voltage (cont.)}
\vspace{-0.3cm}
\begin{figure}
\begin{circuitikz}[]
%full-bridge
Expand All @@ -1338,7 +1340,7 @@ \subsection{Forward converter}
to [short, -o] (B)
(F) to [short,*-] ++(1,0) coordinate (I)
to [short] ++(1,0) coordinate (H)
(J) to [open,v^= $u_\mathrm{p}(t)\hspace{1.6cm}$, voltage = straight] (I);
(J) to [open,v_= $u_\mathrm{p}(t)$, voltage = straight] (I);
\draw let \p1 = (npn1.B) in node[anchor=east] at (\x1,\y1) {$T_1$};
\draw let \p1 = (npn2.B) in node[anchor=east] at (\x1,\y1) {$T_2$};
\draw let \p1 = (npn3.B) in node[anchor=east] at (\x1,\y1) {$T_3$};
Expand Down

0 comments on commit 7b2ddbe

Please sign in to comment.