-
-
Notifications
You must be signed in to change notification settings - Fork 4
chore:benchmark #57
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
chore:benchmark #57
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,260 @@ | ||
import base64 | ||
import enum | ||
import random | ||
import string | ||
import time | ||
from binascii import hexlify, unhexlify | ||
from statistics import mean | ||
from typing import Callable | ||
|
||
import click | ||
import pybase64 | ||
|
||
from hivemind_bus_client.encodings import Z85B, B91, Z85P | ||
from hivemind_bus_client.exceptions import InvalidEncoding | ||
|
||
performance_weight = 0.5 | ||
bandwidth_weight = 0.5 | ||
|
||
|
||
class SupportedEncodings(str, enum.Enum): | ||
""" | ||
Enum representing JSON-based encryption encodings. | ||
|
||
Ciphers output binary data, and JSON needs to transmit that data as plaintext. | ||
The supported encodings include Base64 and Hex encoding. | ||
""" | ||
JSON_B91 = "JSON-B91" # JSON text output with Base91 encoding | ||
JSON_Z85B = "JSON-Z85B" # JSON text output with Z85B encoding | ||
JSON_Z85P = "JSON-Z85P" # JSON text output with Z85B encoding | ||
JSON_B64 = "JSON-B64" # JSON text output with Base64 encoding | ||
JSON_URLSAFE_B64 = "JSON-URLSAFE-B64" # JSON text output with url safe Base64 encoding | ||
JSON_B32 = "JSON-B32" # JSON text output with Base32 encoding | ||
JSON_HEX = "JSON-HEX" # JSON text output with Base16 (Hex) encoding | ||
JSON_B64_STD = "JSON-B64-stdlib" # JSON text output with Base64 encoding | ||
|
||
|
||
def get_encoder(encoding: SupportedEncodings) -> Callable[[bytes], bytes]: | ||
if encoding == SupportedEncodings.JSON_B64_STD: | ||
return base64.b64encode | ||
if encoding == SupportedEncodings.JSON_B64: | ||
return pybase64.b64encode | ||
if encoding == SupportedEncodings.JSON_URLSAFE_B64: | ||
return pybase64.urlsafe_b64encode | ||
if encoding == SupportedEncodings.JSON_B32: | ||
return base64.b32encode | ||
if encoding == SupportedEncodings.JSON_HEX: | ||
return hexlify | ||
if encoding == SupportedEncodings.JSON_Z85B: | ||
return Z85B.encode | ||
if encoding == SupportedEncodings.JSON_Z85P: | ||
return Z85P.encode | ||
if encoding == SupportedEncodings.JSON_B91: | ||
return B91.encode | ||
raise InvalidEncoding(f"Invalid encoding: {encoding}") | ||
|
||
|
||
def get_decoder(encoding: SupportedEncodings) -> Callable[[bytes], bytes]: | ||
if encoding == SupportedEncodings.JSON_B64_STD: | ||
return base64.b64decode | ||
if encoding == SupportedEncodings.JSON_B64: | ||
return pybase64.b64decode | ||
if encoding == SupportedEncodings.JSON_URLSAFE_B64: | ||
return pybase64.urlsafe_b64decode | ||
if encoding == SupportedEncodings.JSON_B32: | ||
return base64.b32decode | ||
if encoding == SupportedEncodings.JSON_HEX: | ||
return unhexlify | ||
if encoding == SupportedEncodings.JSON_Z85B: | ||
return Z85B.decode | ||
if encoding == SupportedEncodings.JSON_Z85P: | ||
return Z85P.decode | ||
if encoding == SupportedEncodings.JSON_B91: | ||
return B91.decode | ||
raise InvalidEncoding(f"Invalid encoding: {encoding}") | ||
|
||
|
||
def generate_random_data(size: int) -> bytes: | ||
"""Generate random binary data of a given size.""" | ||
return ''.join(random.choice(string.ascii_letters + string.digits) for _ in range(size)).encode("utf-8") | ||
|
||
|
||
def benchmark_encoding(encoding: SupportedEncodings, data: bytes) -> dict: | ||
encoder = get_encoder(encoding) | ||
decoder = get_decoder(encoding) | ||
|
||
# Measure encoding time | ||
start_time = time.perf_counter() | ||
encoded_data = encoder(data) | ||
encoding_time = time.perf_counter() - start_time | ||
|
||
# Measure decoding time | ||
start_time = time.perf_counter() | ||
decoded_data = decoder(encoded_data) | ||
decoding_time = time.perf_counter() - start_time | ||
|
||
# Calculate size increase | ||
original_size = len(data) | ||
encoded_size = len(encoded_data) | ||
size_increase = encoded_size / original_size | ||
|
||
# Check decoding correctness | ||
if decoded_data != data: | ||
raise ValueError(f"Decoded data does not match original data for encoding {encoding}.") | ||
|
||
return { | ||
"encoding_time": encoding_time, | ||
"decoding_time": decoding_time, | ||
"size_increase": size_increase, | ||
"encoded_size": encoded_size, | ||
"original_size": original_size, | ||
} | ||
|
||
|
||
def calculate_score(encoding_results: list) -> dict: | ||
"""Calculate scores for performance and bandwidth.""" | ||
encoding_times = [r["encoding_time"] for r in encoding_results] | ||
decoding_times = [r["decoding_time"] for r in encoding_results] | ||
size_increases = [r["size_increase"] for r in encoding_results] | ||
|
||
avg_encoding_time = mean(encoding_times) | ||
avg_decoding_time = mean(decoding_times) | ||
avg_size_increase = mean(size_increases) | ||
|
||
performance_score = 1 / (avg_encoding_time + avg_decoding_time) if avg_encoding_time + avg_decoding_time else 0 | ||
bandwidth_score = 1 - avg_size_increase | ||
|
||
return {"performance_score": performance_score, "bandwidth_score": bandwidth_score} | ||
|
||
|
||
def normalize_scores(results: dict) -> dict: | ||
"""Normalize performance and bandwidth scores to a 1-100 scale.""" | ||
performance_scores = [r["scores"]["performance_score"] for r in results.values()] | ||
bandwidth_scores = [r["scores"]["bandwidth_score"] for r in results.values()] | ||
|
||
best_performance = min(performance_scores) | ||
worst_performance = max(performance_scores) | ||
best_bandwidth = max(bandwidth_scores) | ||
worst_bandwidth = min(bandwidth_scores) | ||
|
||
normalized = {} | ||
for encoding, data in results.items(): | ||
performance = 99 * (best_performance - data["scores"]["performance_score"]) / ( | ||
best_performance - worst_performance | ||
) + 1 | ||
bandwidth = 99 * (data["scores"]["bandwidth_score"] - worst_bandwidth) / ( | ||
best_bandwidth - worst_bandwidth | ||
) + 1 | ||
normalized[encoding] = {"performance": performance, "bandwidth": bandwidth} | ||
return normalized | ||
|
||
|
||
def calculate_aggregate_score(performance: float, bandwidth: float) -> float: | ||
"""Calculate the aggregate score by combining weighted scores.""" | ||
return (performance * performance_weight) + (bandwidth * bandwidth_weight) | ||
|
||
|
||
def save_detailed_results_to_markdown(results: dict, filename: str): | ||
"""Save detailed benchmark results to a markdown file.""" | ||
with open(filename, "w") as f: | ||
f.write("# Detailed Benchmark Results\n") | ||
f.write( | ||
"| Encoding | Data Size (bytes) | Encoding Time (sec) | Decoding Time (sec) | Size Increase |\n") | ||
f.write( | ||
"|---------------------|-------------------|---------------------|---------------------|---------------|\n") | ||
|
||
for encoding, data in results.items(): | ||
for result in data["results"]: | ||
encoding_time = result["encoding_time"] | ||
decoding_time = result["decoding_time"] | ||
size_increase = result["size_increase"] | ||
original_size = result["original_size"] | ||
f.write( | ||
f"| {encoding} | {original_size} | {encoding_time:.6f} | {decoding_time:.6f} | {size_increase:.2f} |\n" | ||
) | ||
|
||
print(f"Detailed results saved to {filename}") | ||
|
||
|
||
@click.command() | ||
@click.option("--sizes", default="10,100,1000,5000,10000,50000", help="Data sizes to benchmark, comma-separated.") | ||
@click.option("--weights", default="0.5,0.5", help="Weights for performance and bandwidth, comma-separated.") | ||
@click.option("--iterations", default=20, help="Number of iterations to average results.") | ||
def main(sizes: str, weights: str, iterations: int): | ||
global performance_weight, bandwidth_weight | ||
|
||
sizes = list(map(int, sizes.split(","))) | ||
performance_weight, bandwidth_weight = map(float, weights.split(",")) | ||
|
||
# Validate weights | ||
if not (0 <= performance_weight <= 1 and 0 <= bandwidth_weight <= 1): | ||
raise ValueError("Weights must be between 0 and 1") | ||
if abs(performance_weight + bandwidth_weight - 1.0) > 1e-10: | ||
raise ValueError("Weights must sum to 1") | ||
encodings_to_test = [ | ||
SupportedEncodings.JSON_B64_STD, | ||
SupportedEncodings.JSON_B64, | ||
SupportedEncodings.JSON_URLSAFE_B64, | ||
SupportedEncodings.JSON_B32, | ||
SupportedEncodings.JSON_HEX, | ||
SupportedEncodings.JSON_Z85B, | ||
SupportedEncodings.JSON_Z85P, | ||
SupportedEncodings.JSON_B91, | ||
] | ||
|
||
results = {} | ||
for encoding in encodings_to_test: | ||
encoding_results = [] | ||
for size in sizes: | ||
print(f"Benchmarking {encoding.value} with {size} bytes of data over {iterations} iterations...") | ||
aggregated_result = { | ||
"encoding_time": [], | ||
"decoding_time": [], | ||
"size_increase": [], | ||
} | ||
for _ in range(iterations): | ||
data = generate_random_data(size) | ||
result = benchmark_encoding(encoding, data) | ||
aggregated_result["encoding_time"].append(result["encoding_time"]) | ||
aggregated_result["decoding_time"].append(result["decoding_time"]) | ||
aggregated_result["size_increase"].append(result["size_increase"]) | ||
|
||
# Average results over iterations | ||
encoding_results.append({ | ||
"encoding_time": mean(aggregated_result["encoding_time"]), | ||
"decoding_time": mean(aggregated_result["decoding_time"]), | ||
"size_increase": mean(aggregated_result["size_increase"]), | ||
"encoded_size": result["encoded_size"], # Same across iterations | ||
"original_size": result["original_size"], # Same across iterations | ||
}) | ||
scores = calculate_score(encoding_results) | ||
results[encoding.value] = {"results": encoding_results, "scores": scores} | ||
|
||
normalized_scores = normalize_scores(results) | ||
table = [] | ||
|
||
for encoding, data in normalized_scores.items(): | ||
avg_encoding_time = mean(r["encoding_time"] for r in results[encoding]["results"]) | ||
avg_decoding_time = mean(r["decoding_time"] for r in results[encoding]["results"]) | ||
avg_size_increase = mean(r["size_increase"] for r in results[encoding]["results"]) | ||
performance = data["performance"] | ||
bandwidth = data["bandwidth"] | ||
aggregate = calculate_aggregate_score(performance, bandwidth) | ||
|
||
table.append(( | ||
encoding, avg_encoding_time, avg_decoding_time, avg_size_increase, | ||
performance, bandwidth, aggregate | ||
)) | ||
|
||
table.sort(key=lambda x: x[6], reverse=True) | ||
|
||
print("\nBenchmark Results:") | ||
print( | ||
f"{'Encoding':<20} {'Avg Encoding Time':<20} {'Avg Decoding Time':<20} {'Avg Size Increase':<20} {'Performance':<12} {'Bandwidth':<10} {'Aggregate':<10}") | ||
print("=" * 110) | ||
for row in table: | ||
print( | ||
f"{row[0]:<20} {row[1]:<20.6f} {row[2]:<20.6f} {row[3]:<20.2f} {row[4]:<12.2f} {row[5]:<10.2f} {row[6]:<10.2f}") | ||
|
||
if __name__ == "__main__": | ||
main() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.