Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

error with NaN; allow method to pass through #594

Merged
merged 1 commit into from
Feb 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ name = "Polynomials"
uuid = "f27b6e38-b328-58d1-80ce-0feddd5e7a45"
license = "MIT"
author = "JuliaMath"
version = "4.0.14"
version = "4.0.15"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
6 changes: 2 additions & 4 deletions src/polynomials/multroot.jl
Original file line number Diff line number Diff line change
Expand Up @@ -145,7 +145,6 @@ function pejorative_manifold(
ϕ = 100, # residual growth factor
kwargs...
) where {T,X}

S = float(T)
u = convert(PnPolynomial{S,X}, coeffs0(p))
nu₂ = norm(u, 2)
Expand All @@ -156,9 +155,9 @@ function pejorative_manifold(
atol = ρ2, rtol = zero(ρ2))
ρⱼ /= nu₂

hasnan(v) && throw(ArgumentError("NaN in reduced polynomial"))
# root approximations
zs = roots(v)

# recover multiplicities
ls = pejorative_manifold_multiplicities(Val(method),
u, v, w,
Expand Down Expand Up @@ -206,7 +205,6 @@ function pejorative_manifold_multiplicities(
end

end

ls

end
Expand All @@ -225,6 +223,7 @@ function pejorative_manifold_multiplicities(

dv = derivative(v)
ls = w.(zs) ./ dv.(zs)

ls = round.(Int, real.(ls))

return ls
Expand Down Expand Up @@ -258,7 +257,6 @@ function pejorative_root(p, zs::Vector{S}, ls;

## Solve WJ Δz = W(Gl(z) - a)
## using weights min(1/|aᵢ|), i ≠ 1

m,n = sum(ls), length(zs)
# storage
a = p[2:end]./p[1] # a ~ (p[n-1], p[n-2], ..., p[0])/p[n]
Expand Down
1 change: 0 additions & 1 deletion src/polynomials/ngcd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,6 @@ function ngcd(p::P, q::Q,
p′ = P′{R,X}(ps[nz:end])
q′ = P′{R,X}(qs[nz:end])
out = NGCD.ngcd(p′, q′, args...; kwargs...)

## convert to original polynomial type
𝑷 = Polynomials.constructorof(P){R,X}
u,v,w = convert.(𝑷, (out.u,out.v,out.w))
Expand Down
13 changes: 10 additions & 3 deletions src/rational-functions/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -427,15 +427,22 @@ end

## ---- zeros, poles, ...
"""
poles(pq::AbstractRationalFunction; method=:numerical, kwargs...)
poles(pq::AbstractRationalFunction;
method=:numerical, multroot_method=:direct, kwargs...)

For a rational function `p/q`, first reduces to normal form, then finds the roots and multiplicities of the resulting denominator.

* `method` is used to pass to `lowest_terms`
* `multroot_method` is passed to the method argument of `multroot`, which can be `:direct` (the faster default) or `:iterative` (the slower, and possibly more robust alternate)

"""
function poles(pq::AbstractRationalFunction; method=:numerical, kwargs...)
function poles(pq::AbstractRationalFunction;
method=:numerical, # for lowest_terms
multroot_method=:direct, # or :iterative
kwargs...)
pq′ = lowest_terms(pq; method=method, kwargs...)
den = denominator(pq′)
mr = Multroot.multroot(den)
mr = Multroot.multroot(den; method=multroot_method)
(zs=mr.values, multiplicities = mr.multiplicities)
end

Expand Down
14 changes: 14 additions & 0 deletions test/StandardBasis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -1027,6 +1027,20 @@ end
out = Polynomials.Multroot.multroot(Polynomials.Polynomial(pb))
@test out.values ≈ [1.0] && out.multiplicities == [2]

## Issue #592
p = Polynomial([NaN,NaN,NaN,NaN,NaN,NaN,NaN])
@test_throws ArgumentError roots(p//p)

## issue #593
numcoeffs = Complex{BigFloat}[-0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, -6.4095e+257 - 3.314e+243im, -5.6118e+244 - 3.9514e+230im, -4.0102e+236 - 2.0735e+222im, -3.0725e+223 - 2.1631e+209im, -1.0975e+215 - 5.6751e+200im, -7.2072e+201 - 5.0751e+187im, -1.7167e+193 - 8.877e+178im, -9.3936e+179 - 6.6134e+165im, -1.678e+171 - 8.6782e+156im, -7.3448e+157 - 5.1693e+143im, -1.0499e+149 - 5.43e+134im, -3.4468e+135 - 2.4259e+121im, -4.1052e+126 - 2.1231e+112im, -8.9846e+112 - 6.3225e+98im, -9.1725e+103 - 4.742e+89im, -1.0036e+90 - 7.0656e+75im, -8.9646e+80 - 4.6354e+66im]
dencoeffs = Complex{BigFloat}[0.0 + 0.0im, 0.0 + 0.0im, -0.0 + 0.0im, -0.0 + 0.0im, 0.0 + 0.0im, 0.0 + 0.0im, -3.0837e+258 + 0.0im, -3.5997e+245 - 9.309e+230im, -1.9292e+237 - 7.0217e+217im, -1.9709e+224 - 5.0951e+209im, -5.2803e+215 - 3.2932e+196im, -4.6214e+202 - 1.1952e+188im, -8.2587e+193 - 6.4383e+174im, -6.0237e+180 - 1.5577e+166im, -8.0763e+171 - 6.7125e+152im, -4.711e+158 - 1.2183e+144im, -5.0507e+149 - 3.937e+130im, -2.2106e+136 - 5.7173e+121im, -1.9752e+127 - 1.2316e+108im, -5.7628e+113 - 1.4904e+99im, -4.4151e+104 - 1.6057e+85im, -6.4393e+90 - 1.6651e+76im, -4.3167e+81 + 0.0im]
p = Polynomial(numcoeffs)
q = Polynomial(dencoeffs)
r = p//q

@test_throws ArgumentError poles(r)
out = poles(r; multroot_method=:iterative)
@test out.multiplicities == [3]
end

@testset "critical points" begin
Expand Down
Loading