Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

one part of #602 #603

Open
wants to merge 3 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 21 additions & 13 deletions src/polynomials/ngcd.jl
Original file line number Diff line number Diff line change
Expand Up @@ -13,26 +13,18 @@ function ngcd(p::P, q::Q,
kwargs...) where {T,X,P<:StandardBasisPolynomial{T,X},
S,Y,Q<:StandardBasisPolynomial{S,Y}}


# easy cases
degree(p) < 0 && return (u=q, v=p, w=one(q), θ=NaN, κ=NaN)
degree(p) == 0 && return (u=one(q), v=p, w=q, θ=NaN, κ=NaN)
degree(q) < 0 && return (u=one(q), v=p, w=zero(q), θ=NaN, κ=NaN)
degree(q) == 0 && return (u=one(p), v=p, w=q, Θ=NaN, κ=NaN)


if (degree(q) > degree(p))
u,w,v,Θ,κ = ngcd(q,p,args...; kwargs...)
return (u=u,v=v,w=w, Θ=Θ, κ=κ)
end
if degree(p) > 5*(1+degree(q))
a,b = divrem(p,q)
return ngcd(q, b, args...; λ=100, kwargs...)
end

# other easy cases
p ≈ q && return (u=p,v=one(p), w=one(p), θ=NaN, κ=NaN)
Polynomials.assert_same_variable(p,q)



R = promote_type(float(T))
𝑷 = Polynomials.constructorof(P){R,X}
Expand All @@ -45,14 +37,30 @@ function ngcd(p::P, q::Q,
if nz == length(qs)
x = variable(p)
u = x^(nz-1)
v,w = 𝑷(ps[nz:end]), 𝑷(qs[nz:end])
ps,qs = ps[nz:end], qs[nz:end]
v,w = 𝑷(ps), 𝑷(qs)
return (u=u, v=v, w=w, Θ=NaN, κ=NaN)
elseif 1 <= nz < length(qs)
ps,qs = ps[nz:end], qs[nz:end]
p,q = P(ps), Q(qs)
end

if degree(p) > 5*(1+degree(q))
a,b = divrem(p,q)
return ngcd(q, b, args...; λ=100, kwargs...)
end

# other easy cases
p ≈ q && return (u=p,v=one(p), w=one(p), θ=NaN, κ=NaN)
Polynomials.assert_same_variable(p,q)

@show ps, qs

## call ngcd
P′ = PnPolynomial
p′ = P′{R,X}(ps[nz:end])
q′ = P′{R,X}(qs[nz:end])
p′ = P′{R,X}(ps)
q′ = P′{R,X}(qs)

out = NGCD.ngcd(p′, q′, args...; kwargs...)
## convert to original polynomial type
𝑷 = Polynomials.constructorof(P){R,X}
Expand Down
1 change: 1 addition & 0 deletions src/rational-functions/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -459,6 +459,7 @@ function roots(pq::AbstractRationalFunction{T};
kwargs...) where {T}
pq′ = lowest_terms(pq; method=method, kwargs...)
den = numerator(pq′)
(hasnan(den) || any(isinf, den)) && throw(ArgumentError("Reduced expression has numeric issues"))
mmethod = something(multroot_method, default_multroot_method(T))
mr = Multroot.multroot(den; method=mmethod)
(zs=mr.values, multiplicities = mr.multiplicities)
Expand Down
14 changes: 14 additions & 0 deletions test/rational-functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,20 @@ end
end
@test norm(numerator(lowest_terms(d - pq)), Inf) <= sqrt(eps())


## issue #602
s = Polynomial([0,1],:s)
r = (15s^14 + 1e-16s^15)//(s)
num = numerator(Polynomials.lowest_terms(r))
@test length(roots(num)) == 14
@test_throws DimensionMismatch Polynomials.Multroot.multroot(num) # where to fix

r = (15s^14 + 1e-16s^15)//(1s + 14s^14)
num = numerator(Polynomials.lowest_terms(r))
@test length(roots(num)) == 14
@test_throws DimensionMismatch Polynomials.Multroot.multroot(num) # where to fix


end

@testset "As matrix elements" begin
Expand Down
Loading