Skip to content

Use mul! from LinearAlgebra instead of a local definition #217

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
May 19, 2020
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -8,6 +8,7 @@ julia:
- 1.1
- 1.2
- 1.3
- 1
- nightly

matrix:
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
name = "DistributedArrays"
uuid = "aaf54ef3-cdf8-58ed-94cc-d582ad619b94"
version = "0.6.4"
version = "0.6.5"

[deps]
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
2 changes: 1 addition & 1 deletion src/DistributedArrays.jl
Original file line number Diff line number Diff line change
@@ -9,7 +9,7 @@ using Statistics

import Base: +, -, *, div, mod, rem, &, |, xor
import Base.Callable
import LinearAlgebra: axpy!, dot, norm
import LinearAlgebra: axpy!, dot, norm, mul!

import Primes
import Primes: factor
10 changes: 5 additions & 5 deletions src/linalg.jl
Original file line number Diff line number Diff line change
@@ -80,7 +80,7 @@ function add!(dest, src, scale = one(dest[1]))
return dest
end

function mul!(y::DVector, A::DMatrix, x::AbstractVector, α::Number = 1, β::Number = 0)
function LinearAlgebra.mul!(y::DVector, A::DMatrix, x::AbstractVector, α::Number = 1, β::Number = 0)

# error checks
if size(A, 2) != length(x)
@@ -127,7 +127,7 @@ function mul!(y::DVector, A::DMatrix, x::AbstractVector, α::Number = 1, β::Num
return y
end

function mul!(y::DVector, adjA::Adjoint{<:Number,<:DMatrix}, x::AbstractVector, α::Number = 1, β::Number = 0)
function LinearAlgebra.mul!(y::DVector, adjA::Adjoint{<:Number,<:DMatrix}, x::AbstractVector, α::Number = 1, β::Number = 0)

A = parent(adjA)

@@ -259,9 +259,9 @@ function _matmatmul!(C::DMatrix, A::DMatrix, B::AbstractMatrix, α::Number, β::
return C
end

mul!(C::DMatrix, A::DMatrix, B::AbstractMatrix, α::Number = 1, β::Number = 0) = _matmatmul!(C, A, B, α, β, 'N')
mul!(C::DMatrix, A::Adjoint{<:Number,<:DMatrix}, B::AbstractMatrix, α::Number = 1, β::Number = 0) = _matmatmul!(C, parent(A), B, α, β, 'C')
mul!(C::DMatrix, A::Transpose{<:Number,<:DMatrix}, B::AbstractMatrix, α::Number = 1, β::Number = 0) = _matmatmul!(C, parent(A), B, α, β, 'T')
LinearAlgebra.mul!(C::DMatrix, A::DMatrix, B::AbstractMatrix, α::Number = 1, β::Number = 0) = _matmatmul!(C, A, B, α, β, 'N')
LinearAlgebra.mul!(C::DMatrix, A::Adjoint{<:Number,<:DMatrix}, B::AbstractMatrix, α::Number = 1, β::Number = 0) = _matmatmul!(C, parent(A), B, α, β, 'C')
LinearAlgebra.mul!(C::DMatrix, A::Transpose{<:Number,<:DMatrix}, B::AbstractMatrix, α::Number = 1, β::Number = 0) = _matmatmul!(C, parent(A), B, α, β, 'T')

_matmul_op = (t,s) -> t*s + t*s