Robot Kinematics & Autonomous Car Racing
Forward/Inverse Kinematics with ML
[Report] [Code]
- Solved FK for 2DOF/3DOF/5DOF robots using 3 distinct approaches:
- RBF Kernel + Linear Regression (2DOF)
- Gradient Boosting (3DOF)
- Deep Neural Network (5DOF)
- Jacobian matrix analysis (Frobenius norm = 2.995 vs analytical)
- Hyperparameter optimization with grid search
DOF | Model | Position Error | Orientation Error |
---|---|---|---|
2 | RBF + Linear Reg | 1.78e⁻⁷ MSE | 1.69e⁻⁶ MSE |
3 | Gradient Boosting | 6.11e⁻⁵ MSE | 0.29 MSE |
5 | Neural Network | 0.0088 MAE | 0.588 MAE |
Image-to-Action Classification
[Report] [Code]
- 5-class CNN for racing control:
- Input: 96x96x3 RGB images
- Output: Steering/gas/brake actions
- Action space modeling:
ACTIONS = { 0: 'No action', 1: 'Steer left', 2: 'Steer right', 3: 'Accelerate', 4: 'Brake' }
- Convolutional Neural Network (CNN) for classification
- Dual CNN Model to improve performance
- Data Augmentation to enhance model generalization
- Hyperparameter Search to optimize model performance
- Performance evaluation with multiple metrics (Accuracy, F1-Score, Precision, Recall)
Dataset Configuration | Accuracy | F1-Score | Precision | Recall |
---|---|---|---|---|
Normal Data (Non-Aug) | 46.95% | 0.208 | 25.87% | 29.27% |
Normal Data (Aug) | 48.51% | 0.1 | 25.2% | 20.19% |
Marked Edges (Non-Aug) | 49.12% | 0.132 | 9.32% | 24.12% |
Marked Edges (Aug) | 42.24% | 0.13 | 21.57% | 22.9% |
Dataset Configuration | Accuracy | F1-Score | Precision | Recall |
---|---|---|---|---|
Normal Data (Non-Aug) | 40.65% | 0.383 | 46.88% | 44.17% |