-
Notifications
You must be signed in to change notification settings - Fork 5
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add DeepMoD_PC #13
Open
Faezehabibi
wants to merge
3
commits into
NACLab:main
Choose a base branch
from
Faezehabibi:feat-deepmod
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
add DeepMoD_PC #13
Changes from all commits
Commits
Show all changes
3 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,323 @@ | ||
from jax import random, jit | ||
import numpy as np | ||
from ngclearn.utils.io_utils import makedir | ||
|
||
from ngclearn.utils import weight_distribution as dist | ||
from ngclearn import Context, numpy as jnp | ||
from ngclearn.components import (RateCell, | ||
HebbianSynapse, | ||
GaussianErrorCell, | ||
StaticSynapse) | ||
from ngclearn.utils.model_utils import scanner | ||
from ngclearn.modules.regression.lasso import Iterative_Lasso as Lasso | ||
from ngclearn.modules.regression.elastic_net import Iterative_ElasticNet as ElasticNet | ||
from ngclearn.modules.regression.ridge import Iterative_Ridge as Ridge | ||
|
||
|
||
|
||
class DeepMoD(): | ||
""" | ||
Structure for constructing the Deep learning driven Model Discovery: | ||
Both, Gert-Jan, Gijs Vermarien, and Remy Kusters. "Sparsely constrained | ||
neural networks for model discovery of PDEs." arXiv preprint | ||
arXiv:2011.04336 (2020). | ||
|
||
|
||
Note this model decouples the network constraint of the differential | ||
equation terms and the sparsity selection process, allowing for more flexible and | ||
robust model discovery by first calculating a sparsity mask and then constraining | ||
the network only with active terms. | ||
|
||
(The original paper was Deep learning driven Model Discovery (DeepMoD): | ||
Both, Gert-Jan, et al. "DeepMoD: Deep learning for model discovery | ||
in noisy data." Journal of Computational Physics 428 (2021): 109985.) | ||
|
||
|
||
| Node Name Structure: | ||
| z3 -(W3)-> e2, z2 -(W2)-> e1, z1 -(W1)-> e0; | ||
| e2 -(E2)-> z2 <- e1, e1 -(E1)-> z1 <- e0 | ||
| Note: W1, W2, W3 -> Hebbian-adapted synapses | ||
|
||
|
||
Args: | ||
dkey: JAX seeding key | ||
|
||
ts: Time series data points | ||
|
||
dict_dim: Dimensionality of the dictionary/library space | ||
|
||
lib_creator: Library creator function for creating candidate functions out of the predicted values (Xmu) | ||
|
||
in_dim: Input dimensionality | ||
|
||
h1_dim: Dimensionality of first hidden layer | ||
|
||
h2_dim: Dimensionality of second hidden layer | ||
|
||
out_dim: Output dimensionality | ||
|
||
batch_size: Number of samples to process in each batch | ||
|
||
w_fill: Initial weight fill value (Default: 0.05) | ||
|
||
lr: Learning rate for optimization (Default: 0.01) | ||
|
||
lmbda: Regularization parameter (Default: 0.0001) | ||
|
||
l1_ratio: Elastic net mixing parameter (Default: 0.0) | ||
|
||
optim_type: Type of optimizer to use (Default: "adam") | ||
|
||
threshold: Threshold for sparse coefficient selection (Default: 0.001) | ||
|
||
scale: Scaling factor for dictionary terms (Default: 2.0) | ||
|
||
solver_name: Type of regression solver ("lasso", "elastic_net", or "ridge") (Default: "lasso") | ||
|
||
eta: Learning rate for Hebbian updates (Default: 1e-3) | ||
|
||
tau_m: Membrane time constant (Default: 20.0) | ||
|
||
T: Number of discrete time steps for simulation (Default: 50) | ||
|
||
dt: Integration time step (Default: 1.0) | ||
|
||
exp_dir: Directory path for saving experimental results (Default: "exp") | ||
|
||
model_name: Name identifier for the model (Default: "deepmod") | ||
|
||
""" | ||
def __init__(self, key, ts, dict_dim, lib_creator, in_dim, h1_dim, h2_dim, out_dim, batch_size, | ||
w_fill=0.05, lr=0.01, lmbda=0.0001, l1_ratio=0., optim_type="adam", threshold=0.001, scale=2., | ||
solver_name = "lasso", eta = 1e-3, tau_m = 20., T=50, dt=1., | ||
model_name="deepmod", **kwargs): | ||
dkey, *subkeys = random.split(key, 10) | ||
|
||
self.model_name = model_name | ||
self.solver_name = solver_name | ||
self.nodes = None | ||
self.threshold = threshold | ||
|
||
## meta-parameters for model dynamics | ||
self.T = T | ||
self.dt = dt | ||
self.ts = ts | ||
self.eta = eta | ||
self.lib_creator = lib_creator | ||
|
||
if solver_name == "lasso" or solver_name == "l1": | ||
print(" >> Building Lasso solver model...") | ||
self.scale = scale | ||
epochs = 100 | ||
sys_dim = out_dim | ||
self.method_params = (key, self.solver_name, sys_dim, dict_dim, batch_size, w_fill, lr, | ||
lmbda, optim_type, threshold, epochs) | ||
|
||
self.solver = Lasso(*self.method_params) | ||
self.W_init = self.solver.W.weights.value | ||
|
||
|
||
if solver_name == "elastic_net" or solver_name == "l1l2": | ||
print(" >> Building Elastic-Net solver model...") | ||
|
||
self.scale = scale | ||
epochs = 100 | ||
sys_dim = out_dim | ||
self.method_params = (key, self.solver_name, sys_dim, dict_dim, batch_size, w_fill, lr, | ||
lmbda, l1_ratio, optim_type, threshold, epochs) | ||
|
||
self.solver = ElasticNet(*self.method_params) | ||
|
||
|
||
if solver_name == "ridge" or solver_name == "l2": | ||
print(" >> Building Ridge solver model...") | ||
self.scale = scale | ||
epochs = 100 | ||
sys_dim = out_dim | ||
self.method_params = (key, self.solver_name, sys_dim, dict_dim, batch_size, w_fill, lr, | ||
lmbda, optim_type, threshold, epochs) | ||
|
||
self.solver = Ridge(*self.method_params) | ||
|
||
opt_type = "adam" | ||
act_fx = "sine" | ||
self.omega_0 = 30 # check 2-300-10 | ||
|
||
W3_dist = dist.uniform( | ||
amin=-1 / h2_dim, | ||
amax=1 / h2_dim | ||
) | ||
W2_dist = dist.uniform( | ||
amin=-np.sqrt(6 / h1_dim) / self.omega_0, | ||
amax=np.sqrt(6 / h1_dim) / self.omega_0 | ||
) | ||
W1_dist = dist.uniform( | ||
amin=-np.sqrt(6 / out_dim) / self.omega_0, | ||
amax=np.sqrt(6 / out_dim) / self.omega_0 | ||
) | ||
|
||
with Context(self.model_name) as self.model: | ||
############ L3 | ||
self.z3 = RateCell("z3", n_units=in_dim, tau_m=tau_m , act_fx="identity") | ||
self.W3 = HebbianSynapse("W3", shape=(in_dim, h2_dim), eta=eta, w_bound=0., signVal=-1, sign_value=-1, | ||
optim_type=opt_type, weight_init=W3_dist, key=subkeys[0] | ||
) | ||
############ L2 | ||
self.e2 = GaussianErrorCell("e2", n_units=h2_dim) | ||
self.z2 = RateCell("z2", n_units=h2_dim, tau_m=tau_m , act_fx=act_fx, omega_0=self.omega_0, | ||
batch_size=batch_size) | ||
|
||
self.W2 = HebbianSynapse("W2", shape=(h2_dim, h1_dim), eta=eta, w_bound=0., signVal=-1, sign_value=-1, | ||
optim_type=opt_type, weight_init=W2_dist, key=subkeys[1]) | ||
self.E2 = StaticSynapse("E2", shape=(h1_dim, h2_dim) | ||
) | ||
############ L1 | ||
self.e1 = GaussianErrorCell("e1", n_units=h1_dim) | ||
self.z1 = RateCell("z1", n_units=h1_dim, tau_m=tau_m , act_fx="identity") | ||
self.W1 = HebbianSynapse("W1", shape=(h1_dim, out_dim), eta=eta, w_bound=0., signVal=-1, sign_value=-1, | ||
optim_type=opt_type, weight_init=W1_dist, key=subkeys[2]) | ||
self.E1 = StaticSynapse("E1", shape=(out_dim, h1_dim) | ||
) | ||
############ input | ||
self.e0 = GaussianErrorCell("e0", n_units=out_dim | ||
) | ||
# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
self.z3.batch_size= batch_size | ||
self.z2.batch_size= batch_size | ||
self.z1.batch_size = batch_size | ||
|
||
self.e2.batch_size = batch_size | ||
self.e1.batch_size = batch_size | ||
self.e0.batch_size = batch_size | ||
|
||
self.W3.batch_size = batch_size | ||
self.W2.batch_size = batch_size | ||
self.W1.batch_size = batch_size | ||
|
||
self.E2.batch_size = batch_size | ||
self.E1.batch_size = batch_size | ||
# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
self.W3.inputs << self.z3.zF | ||
self.e2.mu << self.W3.outputs | ||
|
||
self.e2.target << self.z2.z | ||
self.W2.inputs << self.z2.zF | ||
self.e1.mu << self.W2.outputs | ||
|
||
self.e1.target << self.z1.z | ||
self.W1.inputs << self.z1.zF | ||
self.e0.mu << self.W1.outputs | ||
|
||
self.z2.j_td << self.e2.dtarget | ||
self.E2.inputs << self.e1.dmu | ||
self.z2.j << self.E2.outputs | ||
|
||
self.z1.j_td << self.e1.dtarget | ||
self.E1.inputs << self.e0.dmu | ||
self.z1.j << self.E1.outputs | ||
|
||
self.W1.pre << self.z1.zF | ||
self.W1.post << self.e0.dmu | ||
|
||
self.W2.pre << self.z2.zF | ||
self.W2.post << self.e1.dmu | ||
|
||
self.W3.pre << self.z3.zF | ||
self.W3.post << self.e2.dmu | ||
|
||
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
advance_cmd, advance_args =self.model.compile_by_key(self.E2, self.E1, ## execute feedback first | ||
self.z3, self.z2, self.z1, | ||
self.W3, self.W2, self.W1, ## execute prediction synapses | ||
self.e2, self.e1, self.e0, ## finally, execute error neurons | ||
compile_key="advance_state", name='advance_state') | ||
|
||
evolve_cmd, evolve_args =self.model.compile_by_key(self.W1, self.W2, self.W3, | ||
compile_key="evolve") | ||
|
||
reset_cmd, reset_args =self.model.compile_by_key(self.z3, self.z2, self.z1, | ||
self.e2, self.e1, self.e0, | ||
self.W3, self.W2, self.W1, | ||
self.E1, self.E2, | ||
compile_key="reset") | ||
|
||
# # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
self.dynamic() | ||
|
||
def dynamic(self): ## create dynamic commands forself.circuit | ||
z3, z2, z1, W3, W2, W1, E1, E2, e0, e1, e2 = self.model.get_components("z3", "z2", "z1", | ||
"W3", "W2", "W1", | ||
"E1", "E2", | ||
"e0", "e1", "e2") | ||
self.W1, self.W2, self.W3 = (W1, W2, W3) | ||
self.e0, self.e1, self.e2 = (e0, e1, e2) | ||
self.z1, self.z2, self.z3 = (z1, z2, z3) | ||
self.E1, self.E2 = (E1, E2) | ||
|
||
@Context.dynamicCommand | ||
def clamps(input, target): | ||
self.z3.z.set(input) | ||
self.e0.target.set(target) | ||
|
||
@Context.dynamicCommand | ||
def batch_set(batch_size): | ||
self.z3.batch_size= batch_size | ||
self.z2.batch_size= batch_size | ||
self.z1.batch_size = batch_size | ||
|
||
self.e2.batch_size = batch_size | ||
self.e1.batch_size = batch_size | ||
self.e0.batch_size = batch_size | ||
|
||
self.W3.batch_size = batch_size | ||
self.W2.batch_size = batch_size | ||
self.W1.batch_size = batch_size | ||
|
||
self.E2.batch_size = batch_size | ||
self.E1.batch_size = batch_size | ||
|
||
self.model.wrap_and_add_command(jit(self.model.evolve), name="evolve") | ||
# self.model.wrap_and_add_command(jit(self.model.advance_state), name="advance") | ||
self.model.wrap_and_add_command(jit(self.model.reset), name="reset") | ||
|
||
@scanner | ||
def _process(compartment_values, args): | ||
_t, _dt = args | ||
compartment_values = self.model.advance_state( | ||
compartment_values, t=_t, dt=_dt) | ||
return compartment_values, compartment_values[self.W1.outputs.path] | ||
|
||
|
||
def prediction_process(self, input, target): | ||
self.model.batch_set(len(input)) | ||
self.E1.weights.set(self.W1.weights.value.T) | ||
self.E2.weights.set(self.W2.weights.value.T) | ||
|
||
self.model.reset() | ||
self.model.clamps(input, target) | ||
|
||
z_codes = self.model._process(jnp.array([[self.dt * i, self.dt] for i in range(self.T)])) | ||
self.model.evolve(t=self.T, dt=self.dt) | ||
|
||
return self.e0.mu.value, self.e0.L.value | ||
|
||
|
||
def thresholding(self): | ||
coef_old = self.solver.W.weights.value | ||
coef_new = jnp.where(jnp.abs(coef_old) >= self.threshold, coef_old, 0.) | ||
|
||
self.solver.W.weights.set(coef_new) | ||
|
||
return coef_new | ||
|
||
|
||
def process(self, ts_scaled, X): | ||
self.model.batch_set(len(ts_scaled)) | ||
Xmu, loss = self.prediction_process(input=self.ts, target=X) | ||
|
||
library, _ = self.lib_creator.fit([Xmu[:, i] for i in range(Xmu.shape[1])]) | ||
dXmu = jnp.array(np.gradient(jnp.array(Xmu), self.ts.ravel(), axis=0)) | ||
|
||
coef = self.solver.fit(y=dXmu/self.scale, X=library)[0] | ||
|
||
return coef, loss |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
z_codes
was not used, is this needed?I think it's fine to leave it there if it serves the
._process
purpose, leaving a comment will clarify for the reader