Getting Started:
Install SAM-6D env and the model checkpoints:
cd SAM-6D
bash prepare.sh
Download BOP Datasets inside /Data.
Structure should be:
Data/BOP
├── lmo
├──models # object CAD models
├──test # bop19 test set
...
cd ../Render/
blenderproc run render_bop_templates.py --dataset_name $DATASET
The string "DATASET" could be set as lmo, icbin, itodd, hb, tless, tudl or ycbv. Rendered templates can also be downloaded from the SAM-6D repo.
Run Instance Segmentation with SAM or FastSAM.
cd Instance_Segmentation_Model
export CUDA_VISIBLE_DEVICES=0
python run_inference.py dataset_name=$DATASET or python run_inference.py dataset_name=$DATASET model=ISM_fastsam.
The string "DATASET" could be set as lmo, icbin, itodd, hb, tless, tudl or ycbv.
Evaluation on BOP Datasets:
cd Pose_Estimation_Model
python test_bop.py --gpus 0 --model pose_estimation_model --config config/base.yaml --dataset $DATASET --view 42
The string "DATASET" could be set as lmo, icbin, itodd, hb, tless, tudl or ycbv.