Skip to content

Commit 2b863a3

Browse files
authored
Merge pull request #388 from QuantEcon/update_edm
[equalizing_difference] Update `numpy` code in to remove vectorization
2 parents 020c88f + 568dcd5 commit 2b863a3

File tree

1 file changed

+108
-147
lines changed

1 file changed

+108
-147
lines changed

lectures/equalizing_difference.md

+108-147
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.14.4
7+
jupytext_version: 1.16.1
88
kernelspec:
99
display_name: Python 3 (ipykernel)
1010
language: python
@@ -29,7 +29,7 @@ To map Friedman's application into our model, think of our high school students
2929

3030
Our presentation is "incomplete" in the sense that it is based on a single equation that would be part of set equilibrium conditions of a more fully articulated model.
3131

32-
This ''equalizing difference'' equation determines a college, high-school wage ratio that equalizes present values of a high school educated worker and a college educated worker.
32+
This ''equalizing difference'' equation determines a college-high-school wage ratio that equalizes present values of a high school educated worker and a college educated worker.
3333

3434
The idea is that lifetime earnings somehow adjust to make a new high school worker indifferent between going to college and not going to college but instead going to work immmediately.
3535

@@ -50,6 +50,8 @@ As usual, we'll start by importing some Python modules.
5050
```{code-cell} ipython3
5151
import numpy as np
5252
import matplotlib.pyplot as plt
53+
from collections import namedtuple
54+
from sympy import Symbol, Lambda, symbols
5355
```
5456

5557
## The indifference condition
@@ -165,38 +167,7 @@ $$
165167
\phi = \frac{A_h}{A_c} .
166168
$$
167169
168-
Soon we'll write Python code to compute $\phi$ and plot it as a function of its determinants.
169-
170-
But first we'll describe an alternative interpretation of our model that mostly just relabels variables.
171-
172-
173-
174-
## Reinterpreting the model: workers and entrepreneurs
175-
176-
177-
We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.
178-
179-
We now let $h$ be the present value of a "worker".
180-
181-
We define the present value of an entrepreneur to be
182-
183-
$$
184-
c_0 = \pi \sum_{t=4}^T R^{-t} w_t^c
185-
$$
186-
187-
where $\pi \in (0,1) $ is the probability that an entrepreneur's "project" succeeds.
188-
189-
For our model of workers and firms, we'll interpret $D$ as the cost of becoming an entrepreneur.
190-
191-
This cost might include costs of hiring workers, office space, and lawyers.
192-
193-
194-
195-
What we used to call the college, high school wage gap $\phi$ now becomes the ratio
196-
of a successful entrepreneur's earnings to a worker's earnings.
197-
198-
We'll find that as $\pi$ decreases, $\phi$ increases, indicating that the riskier it is to
199-
be an entrepreuner, the higher must be the reward for a successful project.
170+
In the next section we'll write Python code to compute $\phi$ and plot it as a function of its determinants.
200171
201172
## Computations
202173
@@ -206,34 +177,30 @@ prominently including $\gamma_h, \gamma_c, R$.
206177
207178
Now let's write some Python code to compute $\phi$ and plot it as a function of some of its determinants.
208179
209-
210180
```{code-cell} ipython3
211-
class equalizing_diff:
212-
"""
213-
A class of the equalizing difference model
214-
"""
181+
# Define the namedtuple for the equalizing difference model
182+
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D')
183+
184+
def create_edm(R=1.05, # gross rate of return
185+
T=40, # time horizon
186+
γ_h=1.01, # high-school wage growth
187+
γ_c=1.01, # college wage growth
188+
w_h0=1, # initial wage (high school)
189+
D=10, # cost for college
190+
):
191+
192+
return EqDiffModel(R, T, γ_h, γ_c, w_h0, D)
193+
194+
def compute_gap(model):
195+
R, T, γ_h, γ_c, w_h0, D = model
215196
216-
def __init__(self, R, T, γ_h, γ_c, w_h0, D=0, π=None):
217-
# one switches to the weak model by setting π
218-
self.R, self.γ_h, self.γ_c, self.w_h0, self.D = R, γ_h, γ_c, w_h0, D
219-
self.T, self.π = T, π
197+
A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
198+
A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
199+
ϕ = A_h / A_c + D / (w_h0 * A_c)
220200
221-
def compute_gap(self):
222-
R, γ_h, γ_c, w_h0, D = self.R, self.γ_h, self.γ_c, self.w_h0, self.D
223-
T, π = self.T, self.π
224-
225-
A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
226-
A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
227-
228-
# tweaked model
229-
if π!=None:
230-
A_c = π*A_c
231-
232-
ϕ = A_h/A_c + D/(w_h0*A_c)
233-
return ϕ
201+
return ϕ
234202
```
235203
236-
237204
Using vectorization instead of loops,
238205
we build some functions to help do comparative statics .
239206
@@ -242,75 +209,33 @@ For a given instance of the class, we want to recompute $\phi$ when one paramete
242209
Let's do an example.
243210
244211
```{code-cell} ipython3
245-
# ϕ_R
246-
def ϕ_R(mc, R_new):
247-
mc_new = equalizing_diff(R_new, mc.T, mc.γ_h, mc.γ_c, mc.w_h0, mc.D, mc.π)
248-
return mc_new.compute_gap()
249-
250-
ϕ_R = np.vectorize(ϕ_R)
251-
252-
# ϕ_γh
253-
def ϕ_γh(mc, γh_new):
254-
mc_new = equalizing_diff(mc.R, mc.T, γh_new, mc.γ_c, mc.w_h0, mc.D, mc.π)
255-
return mc_new.compute_gap()
256-
257-
ϕ_γh = np.vectorize(ϕ_γh)
258-
259-
# ϕ_γc
260-
def ϕ_γc(mc, γc_new):
261-
mc_new = equalizing_diff(mc.R, mc.T, mc.γ_h, γc_new, mc.w_h0, mc.D, mc.π)
262-
return mc_new.compute_gap()
263-
264-
ϕ_γc = np.vectorize(ϕ_γc)
212+
ex1 = create_edm()
213+
gap1 = compute_gap(ex1)
265214
266-
# ϕ_π
267-
def ϕ_π(mc, π_new):
268-
mc_new = equalizing_diff(mc.R, mc.T, mc.γ_h, mc.γ_c, mc.w_h0, mc.D, π_new)
269-
return mc_new.compute_gap()
270-
271-
ϕ_π = np.vectorize(ϕ_π)
272-
```
273-
274-
```{code-cell} ipython3
275-
# set benchmark parameters
276-
R = 1.05
277-
T = 40
278-
γ_h, γ_c = 1.01, 1.01
279-
w_h0 = 1
280-
D = 10
281-
282-
# create an instance
283-
ex1 = equalizing_diff(R=R, T=T, γ_h=γ_h, γ_c=γ_c, w_h0=w_h0, D=D)
284-
gap1 = ex1.compute_gap()
285-
286-
print(gap1)
215+
gap1
287216
```
288217
289218
Let's not charge for college and recompute $\phi$.
290219
291220
The initial college wage premium should go down.
292221
293-
294-
295-
296222
```{code-cell} ipython3
297223
# free college
298-
ex2 = equalizing_diff(R, T, γ_h, γ_c, w_h0, D=0)
299-
gap2 = ex2.compute_gap()
300-
print(gap2)
224+
ex2 = create_edm(D=0)
225+
gap2 = compute_gap(ex2)
226+
gap2
301227
```
302228
303-
304-
305229
Let us construct some graphs that show us how the initial college-high-school wage ratio $\phi$ would change if one of its determinants were to change.
306230
307-
Let's start with the gross interest rate $R$.
308-
309-
231+
Let's start with the gross interest rate $R$.
310232
311233
```{code-cell} ipython3
312234
R_arr = np.linspace(1, 1.2, 50)
313-
plt.plot(R_arr, φ_R(ex1, R_arr))
235+
models = [create_edm(R=r) for r in R_arr]
236+
gaps = [compute_gap(model) for model in models]
237+
238+
plt.plot(R_arr, gaps)
314239
plt.xlabel(r'$R$')
315240
plt.ylabel(r'wage gap')
316241
plt.show()
@@ -323,11 +248,15 @@ determinants of $\phi$.
323248
324249
```{code-cell} ipython3
325250
γc_arr = np.linspace(1, 1.2, 50)
326-
plt.plot(γc_arr, φ_γc(ex1, γc_arr))
251+
models = [create_edm(γ_c=γ_c) for γ_c in γc_arr]
252+
gaps = [compute_gap(model) for model in models]
253+
254+
plt.plot(γc_arr, gaps)
327255
plt.xlabel(r'$\gamma_c$')
328256
plt.ylabel(r'wage gap')
329257
plt.show()
330258
```
259+
331260
Notice how the intitial wage gap falls when the rate of growth $\gamma_c$ of college wages rises.
332261
333262
The wage gap falls to "equalize" the present values of the two types of career, one as a high school worker, the other as a college worker.
@@ -338,33 +267,87 @@ The following graph shows what happens.
338267
339268
```{code-cell} ipython3
340269
γh_arr = np.linspace(1, 1.1, 50)
341-
plt.plot(γh_arr, φ_γh(ex1, γh_arr))
270+
models = [create_edm(γ_h=γ_h) for γ_h in γh_arr]
271+
gaps = [compute_gap(model) for model in models]
272+
273+
plt.plot(γh_arr, gaps)
342274
plt.xlabel(r'$\gamma_h$')
343275
plt.ylabel(r'wage gap')
344276
plt.show()
345277
```
346278
347-
348279
## Entrepreneur-worker interpretation
349280
350-
Now let's adopt the entrepreneur-worker interpretation of our model.
281+
We can add a parameter and reinterpret variables to get a model of entrepreneurs versus workers.
282+
283+
We now let $h$ be the present value of a "worker".
284+
285+
We define the present value of an entrepreneur to be
286+
287+
$$
288+
c_0 = \pi \sum_{t=4}^T R^{-t} w_t^c
289+
$$
290+
291+
where $\pi \in (0,1) $ is the probability that an entrepreneur's "project" succeeds.
292+
293+
For our model of workers and firms, we'll interpret $D$ as the cost of becoming an entrepreneur.
351294
352-
If the probability that a new business succeeds is $.2$, let's compute the initial wage premium for successful entrepreneurs.
295+
This cost might include costs of hiring workers, office space, and lawyers.
296+
297+
What we used to call the college, high school wage gap $\phi$ now becomes the ratio
298+
of a successful entrepreneur's earnings to a worker's earnings.
299+
300+
We'll find that as $\pi$ decreases, $\phi$ increases, indicating that the riskier it is to
301+
be an entrepreuner, the higher must be the reward for a successful project.
302+
303+
Now let's adopt the entrepreneur-worker interpretation of our model
353304
354305
```{code-cell} ipython3
355-
# a model of enterpreneur
356-
ex3 = equalizing_diff(R, T, γ_h, γ_c, w_h0, π=0.2)
357-
gap3 = ex3.compute_gap()
306+
# Define a model of entrepreneur-worker interpretation
307+
EqDiffModel = namedtuple('EqDiffModel', 'R T γ_h γ_c w_h0 D π')
308+
309+
def create_edm_π(R=1.05, # gross rate of return
310+
T=40, # time horizon
311+
γ_h=1.01, # high-school wage growth
312+
γ_c=1.01, # college wage growth
313+
w_h0=1, # initial wage (high school)
314+
D=10, # cost for college
315+
π=0 # chance of business success
316+
):
317+
318+
return EqDiffModel(R, T, γ_h, γ_c, w_h0, D, π)
319+
358320
359-
print(gap3)
321+
def compute_gap(model):
322+
R, T, γ_h, γ_c, w_h0, D, π = model
323+
324+
A_h = (1 - (γ_h/R)**(T+1)) / (1 - γ_h/R)
325+
A_c = (1 - (γ_c/R)**(T-3)) / (1 - γ_c/R) * (γ_c/R)**4
326+
327+
# Incorprate chance of success
328+
A_c = π * A_c
329+
330+
ϕ = A_h / A_c + D / (w_h0 * A_c)
331+
return ϕ
360332
```
361333
362-
Now let's study how the initial wage premium for successful entrepreneurs depend on the success probability.
334+
If the probability that a new business succeeds is $0.2$, let's compute the initial wage premium for successful entrepreneurs.
363335
336+
```{code-cell} ipython3
337+
ex3 = create_edm_π(π=0.2)
338+
gap3 = compute_gap(ex3)
339+
340+
gap3
341+
```
342+
343+
Now let's study how the initial wage premium for successful entrepreneurs depend on the success probability.
364344
365345
```{code-cell} ipython3
366346
π_arr = np.linspace(0.2, 1, 50)
367-
plt.plot(π_arr, φ_π(ex3, π_arr))
347+
models = [create_edm_π(π=π) for π in π_arr]
348+
gaps = [compute_gap(model) for model in models]
349+
350+
plt.plot(π_arr, gaps)
368351
plt.ylabel(r'wage gap')
369352
plt.xlabel(r'$\pi$')
370353
plt.show()
@@ -388,16 +371,10 @@ But for a reader interested in how we can get Python to do all the hard work inv
388371
389372
We'll use the Python module 'sympy' to compute partial derivatives of $\phi$ with respect to the parameters that determine it.
390373
391-
Let's import key functions from sympy.
392-
393-
```{code-cell} ipython3
394-
from sympy import Symbol, Lambda, symbols
395-
```
396-
397374
Define symbols
398375
399376
```{code-cell} ipython3
400-
γ_h, γ_c, w_h0, D = symbols('\gamma_h, \gamma_h_c, w_0^h, D', real=True)
377+
γ_h, γ_c, w_h0, D = symbols('\gamma_h, \gamma_c, w_0^h, D', real=True)
401378
R, T = Symbol('R', real=True), Symbol('T', integer=True)
402379
```
403380
@@ -450,8 +427,6 @@ Now let's compute $\frac{\partial \phi}{\partial D}$ and then evaluate it at the
450427
451428
Thus, as with our earlier graph, we find that raising $R$ increases the initial college wage premium $\phi$.
452429
453-
+++
454-
455430
Compute $\frac{\partial \phi}{\partial T}$ and evaluate it a default parameters
456431
457432
```{code-cell} ipython3
@@ -469,8 +444,6 @@ We find that raising $T$ decreases the initial college wage premium $\phi$.
469444
470445
This is because college graduates now have longer career lengths to "pay off" the time and other costs they paid to go to college
471446
472-
+++
473-
474447
Let's compute $\frac{\partial \phi}{\partial γ_h}$ and evaluate it at default parameters.
475448
476449
```{code-cell} ipython3
@@ -484,9 +457,7 @@ Let's compute $\frac{\partial \phi}{\partial γ_h}$ and evaluate it at default p
484457
ϕ_γ_h_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
485458
```
486459
487-
We find that raising $\gamma_h$ increases the initial college wage premium $\phi$, as we did with our earlier graphical analysis.
488-
489-
+++
460+
We find that raising $\gamma_h$ increases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
490461
491462
Compute $\frac{\partial \phi}{\partial γ_c}$ and evaluate it numerically at default parameter values
492463
@@ -501,9 +472,7 @@ Compute $\frac{\partial \phi}{\partial γ_c}$ and evaluate it numerically at def
501472
ϕ_γ_c_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
502473
```
503474
504-
We find that raising $\gamma_c$ decreases the initial college wage premium $\phi$, as we did with our graphical analysis earlier
505-
506-
+++
475+
We find that raising $\gamma_c$ decreases the initial college wage premium $\phi$, in line with our earlier graphical analysis.
507476
508477
Let's compute $\frac{\partial \phi}{\partial R}$ and evaluate it numerically at default parameter values
509478
@@ -518,12 +487,4 @@ Let's compute $\frac{\partial \phi}{\partial R}$ and evaluate it numerically at
518487
ϕ_R_func(D_value, γ_h_value, γ_c_value, R_value, T_value, w_h0_value)
519488
```
520489
521-
+++ {"tags": []}
522-
523-
We find that raising the gross interest rate $R$ increases the initial college wage premium $\phi$, as we did with our graphical analysis earlier
524-
525-
526-
527-
```{code-cell} ipython3
528-
529-
```
490+
We find that raising the gross interest rate $R$ increases the initial college wage premium $\phi$, in line with our earlier graphical analysis.

0 commit comments

Comments
 (0)