Skip to content

FIX: yf change to labels and using close price #564

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jan 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lectures/commod_price.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ The figure below shows the price of cotton in USD since the start of 2016.
```{code-cell} ipython3
:tags: [hide-input, hide-output]

s = yf.download('CT=F', '2016-1-1', '2023-4-1')['Adj Close']
s = yf.download('CT=F', '2016-1-1', '2023-4-1')['Close']
```

```{code-cell} ipython3
Expand Down
4 changes: 2 additions & 2 deletions lectures/heavy_tails.md
Original file line number Diff line number Diff line change
Expand Up @@ -197,7 +197,7 @@ mystnb:
caption: Daily Amazon returns
name: dailyreturns-amzn
---
s = data['Adj Close']
s = data['Close']
r = s.pct_change()

fig, ax = plt.subplots()
Expand Down Expand Up @@ -229,7 +229,7 @@ mystnb:
caption: Daily Bitcoin returns
name: dailyreturns-btc
---
s = data['Adj Close']
s = data['Close']
r = s.pct_change()

fig, ax = plt.subplots()
Expand Down
24 changes: 12 additions & 12 deletions lectures/prob_dist.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ jupytext:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.16.1
jupytext_version: 1.16.6
kernelspec:
display_name: Python 3 (ipykernel)
language: python
Expand Down Expand Up @@ -434,7 +434,7 @@ for μ, σ in zip(μ_vals, σ_vals):
u = scipy.stats.norm(μ, σ)
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=f'$\mu={μ}, \sigma={σ}$')
label=rf'$\mu={μ}, \sigma={σ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
Expand All @@ -449,7 +449,7 @@ for μ, σ in zip(μ_vals, σ_vals):
u = scipy.stats.norm(μ, σ)
ax.plot(x_grid, u.cdf(x_grid),
alpha=0.5, lw=2,
label=f'$\mu={μ}, \sigma={σ}$')
label=rf'$\mu={μ}, \sigma={σ}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
Expand Down Expand Up @@ -510,7 +510,7 @@ for σ in σ_vals:
u = scipy.stats.norm(μ, σ)
ax.plot(x_grid, u.cdf(x_grid),
alpha=0.5, lw=2,
label=f'$\mu={μ}, \sigma={σ}$')
label=rf'$\mu={μ}, \sigma={σ}$')
ax.set_ylim(0, 1)
ax.set_xlim(0, 3)
ax.set_xlabel('x')
Expand Down Expand Up @@ -554,7 +554,7 @@ for λ in λ_vals:
u = scipy.stats.expon(scale=1/λ)
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=f'$\lambda={λ}$')
label=rf'$\lambda={λ}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
Expand All @@ -567,7 +567,7 @@ for λ in λ_vals:
u = scipy.stats.expon(scale=1/λ)
ax.plot(x_grid, u.cdf(x_grid),
alpha=0.5, lw=2,
label=f'$\lambda={λ}$')
label=rf'$\lambda={λ}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
Expand Down Expand Up @@ -615,7 +615,7 @@ for α, β in zip(α_vals, β_vals):
u = scipy.stats.beta(α, β)
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
label=rf'$\alpha={α}, \beta={β}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
Expand All @@ -628,7 +628,7 @@ for α, β in zip(α_vals, β_vals):
u = scipy.stats.beta(α, β)
ax.plot(x_grid, u.cdf(x_grid),
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
label=rf'$\alpha={α}, \beta={β}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
Expand Down Expand Up @@ -675,7 +675,7 @@ for α, β in zip(α_vals, β_vals):
u = scipy.stats.gamma(α, scale=1/β)
ax.plot(x_grid, u.pdf(x_grid),
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
label=rf'$\alpha={α}, \beta={β}$')
ax.set_xlabel('x')
ax.set_ylabel('PDF')
plt.legend()
Expand All @@ -688,7 +688,7 @@ for α, β in zip(α_vals, β_vals):
u = scipy.stats.gamma(α, scale=1/β)
ax.plot(x_grid, u.cdf(x_grid),
alpha=0.5, lw=2,
label=fr'$\alpha={α}, \beta={β}$')
label=rf'$\alpha={α}, \beta={β}$')
ax.set_ylim(0, 1)
ax.set_xlabel('x')
ax.set_ylabel('CDF')
Expand Down Expand Up @@ -799,7 +799,7 @@ So we will have one observation for each month.
:tags: [hide-output]

df = yf.download('AMZN', '2000-1-1', '2024-1-1', interval='1mo')
prices = df['Adj Close']
prices = df['Close']
x_amazon = prices.pct_change()[1:] * 100
x_amazon.head()
```
Expand Down Expand Up @@ -876,7 +876,7 @@ For example, let's compare the monthly returns on Amazon shares with the monthly
:tags: [hide-output]

df = yf.download('COST', '2000-1-1', '2024-1-1', interval='1mo')
prices = df['Adj Close']
prices = df['Close']
x_costco = prices.pct_change()[1:] * 100
```

Expand Down
Loading