Aneesh Chavan1,
Vaibhav Agrawal*1,
Vineeth Bhat*1,
Sarthak Chittawar*1,
Siddharth Srivastava3,
Chetan Arora2,
K Madhava Krishna1
1Robotics Research Centre, IIIT Hyderabad,
2IIT Delhi,
3Typeface Inc.
*equal contribution
Code | Paper | Datasets | Project Page
git submodule update --init
conda env create -f environment.yml
conda activate dator
Please clone the repo recursively to clone all the submodules as well.
cd object_memory/recognize-anything
pip install -e .
cd object_memory/Grounded-Segment-Anything
export AM_I_DOCKER=False
export BUILD_WITH_CUDA=True
export CUDA_HOME=/usr/local/cuda-11.8 # export CUDA_HOME=/path/to/cuda-11.3/ for others
python -m pip install -e segment_anything
pip install --no-build-isolation -e GroundingDINO
NOTE: Update the environment YAML before merging any PR. Remove the prefix
property from the YAML file as well.
bash bash_scripts/download_ram_sam_weights.sh
- DATOR checkpoints are available at Google Drive Link, please change the directory path on line 102 in
utils/embeddings.py
to your download location.
python tum_localisation_trial.py -t {run_name} --data-path {data_path} --map-pcd-cache-path {map_pcd_cache_path} --memory-load-path {memory_load_path} --embeddings {dino/clip/vit/dator}
python real_localisation_trial.py -t {run_name} --data-path {data_path} --map-pcd-cache-path {map_pcd_cache_path} --memory-load-path {memory_load_path} --embeddings {dino/clip/vit/dator}
- Similar to the TransReID training setup.