Skip to content

docs, test: Fit Sieve of Eratosthenes to contributing guidelines #2803

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Oct 29, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 72 additions & 22 deletions math/sieve_of_eratosthenes.cpp
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
/**
* @file
* @brief Get list of prime numbers using Sieve of Eratosthenes
* @brief Prime Numbers using [Sieve of
* Eratosthenes](https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes)
* @details
* Sieve of Eratosthenes is an algorithm that finds all the primes
* between 2 and N.
Expand All @@ -11,21 +12,39 @@
* @see primes_up_to_billion.cpp prime_numbers.cpp
*/

#include <cassert>
#include <iostream>
#include <vector>
#include <cassert> /// for assert
#include <iostream> /// for IO operations
#include <vector> /// for std::vector

/**
* This is the function that finds the primes and eliminates the multiples.
* @namespace math
* @brief Mathematical algorithms
*/
namespace math {
/**
* @namespace sieve_of_eratosthenes
* @brief Functions for finding Prime Numbers using Sieve of Eratosthenes
*/
namespace sieve_of_eratosthenes {
/**
* @brief Function to sieve out the primes
* @details
* This function finds all the primes between 2 and N using the Sieve of
* Eratosthenes algorithm. It starts by assuming all numbers (except zero and
* one) are prime and then iteratively marks the multiples of each prime as
* non-prime.
*
* Contains a common optimization to start eliminating multiples of
* a prime p starting from p * p since all of the lower multiples
* have been already eliminated.
* @param N number of primes to check
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
* @param N number till which primes are to be found
* @return is_prime a vector of `N + 1` booleans identifying if `i`^th number is
* a prime or not
*/
std::vector<bool> sieve(uint32_t N) {
std::vector<bool> is_prime(N + 1, true);
is_prime[0] = is_prime[1] = false;
std::vector<bool> is_prime(N + 1, true); // Initialize all as prime numbers
is_prime[0] = is_prime[1] = false; // 0 and 1 are not prime numbers

for (uint32_t i = 2; i * i <= N; i++) {
if (is_prime[i]) {
for (uint32_t j = i * i; j <= N; j += i) {
Expand All @@ -37,9 +56,10 @@ std::vector<bool> sieve(uint32_t N) {
}

/**
* This function prints out the primes to STDOUT
* @param N number of primes to check
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is a prime or not
* @brief Function to print the prime numbers
* @param N number till which primes are to be found
* @param is_prime a vector of `N + 1` booleans identifying if `i`^th number is
* a prime or not
*/
void print(uint32_t N, const std::vector<bool> &is_prime) {
for (uint32_t i = 2; i <= N; i++) {
Expand All @@ -50,23 +70,53 @@ void print(uint32_t N, const std::vector<bool> &is_prime) {
std::cout << std::endl;
}

} // namespace sieve_of_eratosthenes
} // namespace math

/**
* Test implementations
* @brief Self-test implementations
* @return void
*/
void tests() {
// 0 1 2 3 4 5 6 7 8 9 10
std::vector<bool> ans{false, false, true, true, false, true, false, true, false, false, false};
assert(sieve(10) == ans);
static void tests() {
std::vector<bool> is_prime_1 =
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(10));
std::vector<bool> is_prime_2 =
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(20));
std::vector<bool> is_prime_3 =
math::sieve_of_eratosthenes::sieve(static_cast<uint32_t>(100));

std::vector<bool> expected_1{false, false, true, true, false, true,
false, true, false, false, false};
assert(is_prime_1 == expected_1);

std::vector<bool> expected_2{false, false, true, true, false, true,
false, true, false, false, false, true,
false, true, false, false, false, true,
false, true, false};
assert(is_prime_2 == expected_2);

std::vector<bool> expected_3{
false, false, true, true, false, true, false, true, false, false,
false, true, false, true, false, false, false, true, false, true,
false, false, false, true, false, false, false, false, false, true,
false, true, false, false, false, false, false, true, false, false,
false, true, false, true, false, false, false, true, false, false,
false, false, false, true, false, false, false, false, false, true,
false, true, false, false, false, false, false, true, false, false,
false, true, false, true, false, false, false, false, false, true,
false, false, false, true, false, false, false, false, false, true,
false, false, false, false, false, false, false, true, false, false,
false};
assert(is_prime_3 == expected_3);

std::cout << "All tests have passed successfully!\n";
}

/**
* Main function
* @brief Main function
* @returns 0 on exit
*/
int main() {
tests();

uint32_t N = 100;
std::vector<bool> is_prime = sieve(N);
print(N, is_prime);
return 0;
}
Loading