-
Setup the db with the Drone Simuation Setup
- instructions: https://github.com/TUM-AAS/neural-mpc
-
Setup ml-casadi repository
-
Setup acados on Linux locally
-
set
export PYTHONPATH="/home/{username}/neural-mpc/ml-casadi:/home/{username}/neural-mpc/ros_dd_mpc"
-
set
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/acados/lib && export ACADOS_SOURCE_DIR=~/acados
-
python src/model_fitting/train.py --csv data/simplified_sim_dataset/train/dataset_001.csv
-
python src/experiments/eval.py
- Build and start the Docker container:
./run.sh build
./run.sh up
- Connect Foxglove Studio:
- Open Foxglove Studio
- Click "Open Connection"
- Select "WebSocket"
- Enter URL:
ws://localhost:8765
- Click "Open"
- Add visualization panels in Foxglove:
- Click "+" to add a new panel
- Add "3D" panel to see the car moving
- Add "Plot" panel to see velocities
- Select topics:
/car/odom
for car position/car/reference_path
for the circular path/car/cmd_vel
for velocity commands
./run.sh down
If there is an error on build, prune the docker system.
docker system prune -f