Skip to content

Problems/2layer neural network #8

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 86 additions & 0 deletions backend/static/problems/2layer-neural-network/description.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
入力層、1層の中間層、出力層からなる2層のニューラルネットワークをnumpyを用いて実装してみましょう。

ニューラルネットワークへの入力 $\bold{x} \in \R^n$ ,第1層の重みパラメータ $\bold{W}^{(1)} \in \R^{m \times n}$ 、第1層のバイアスパラメータ $\bold{b}_1 \in \R^m$, 第2層の重みパラメータ $\bold{W}^{(2)} \in \R^{k \times m}$, 第2層のバイアスパラメータ $\bold{b}_2 \in \R^k$ が与えられます。

中間層の活性化関数はReLU関数、出力層の活性化関数は恒等関数とします。

このニューラルネットワークの出力 $\bold{y} \in \R^k$ を計算してください。

## 制約
- $1 \leq n, m, k \leq 100$
- $-100 \leq \bold{x}_i, \bold{W}_{i,j}^{(1)},\bold{W}_{i,j}^{(2)}, \bold{b}_i^{(1)}, \bold{b}_i^{(2)} \leq 100$
- 入力は全て整数

## 入力
入力は以下の形式で標準入力から与えられます。

$
n \ m \ k \\
\bold{x}_1 \ \bold{x}_2 \ \ldots \ \bold{x}_n \\
\bold{W}_{11}^{(1)} \ \bold{W}_{12}^{(1)} \ \ldots \ \bold{W}_{1n}^{(1)} \\
\bold{W}_{21}^{(1)} \ \bold{W}_{22}^{(1)} \ \ldots \ \bold{W}_{2n}^{(1)} \\
\vdots \\
\bold{W}_{m1}^{(1)} \ \bold{W}_{m2}^{(1)} \ \ldots \ \bold{W}_{mn}^{(1)} \\
\bold{b}_1^{(1)} \ \bold{b}_2^{(1)} \ \ldots \ \bold{b}_m^{(1)} \\
\bold{W}_{11}^{(2)} \ \bold{W}_{12}^{(2)} \ \ldots \ \bold{W}_{1m}^{(2)} \\
\bold{W}_{21}^{(2)} \ \bold{W}_{22}^{(2)} \ \ldots \ \bold{W}_{2m}^{(2)} \\
\vdots \\
\bold{W}_{k1}^{(2)} \ \bold{W}_{k2}^{(2)} \ \ldots \ \bold{W}_{km}^{(2)} \\
\bold{b}_1^{(2)} \ \bold{b}_2^{(2)} \ \ldots \ \bold{b}_k^{(2)} \\
$

したがって以下のようなコードで入力を受け取ることができます。

```python3
n, m, k = map(int, input().split())
x = np.array(list(map(int, input().split())))
W1 = np.array([list(map(int, input().split())) for _ in range(m)])
b1 = np.array(list(map(int, input().split())))
W2 = np.array([list(map(int, input().split())) for _ in range(k)])
b2 = np.array(list(map(int, input().split()))
```
## 出力
出力 $\bold{y} \in \R^k$ の要素を空白区切りで出力してください。

## サンプル

### サンプル1

#### 入力
```plaintext
3 2 2
2 -4 3
4 -4 2
3 -2 0
-4 -1
-2 2
3 -5
2 -4
```

#### 出力
```plaintext
-24 9
```

### サンプル2

#### 入力
```plaintext
10 5 2
79 -23 -9 -25 10 49 13 -41 26 58
-63 -83 -92 -95 4 -4 54 -48 15 55
86 53 -24 80 -70 76 35 -51 -48 40
98 89 -8 -48 -11 -1 -69 88 -96 -58
-18 -93 -61 -56 70 -56 -16 65 -70 29
-95 -44 -20 -68 -41 52 -16 29 32 -9
12 74 62 -97 -42
2 -24 40 58 25
-31 57 56 -24 40
-49 -83
```

#### 出力
```plaintext
-239735 405345
```
8 changes: 8 additions & 0 deletions backend/static/problems/2layer-neural-network/in/01.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
3 2 2
2 -4 3
4 -4 2
3 -2 0
-4 -1
-2 2
3 -5
2 -4
11 changes: 11 additions & 0 deletions backend/static/problems/2layer-neural-network/in/02.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
10 5 2
79 -23 -9 -25 10 49 13 -41 26 58
-63 -83 -92 -95 4 -4 54 -48 15 55
86 53 -24 80 -70 76 35 -51 -48 40
98 89 -8 -48 -11 -1 -69 88 -96 -58
-18 -93 -61 -56 70 -56 -16 65 -70 29
-95 -44 -20 -68 -41 52 -16 29 32 -9
12 74 62 -97 -42
2 -24 40 58 25
-31 57 56 -24 40
-49 -83
46 changes: 46 additions & 0 deletions backend/static/problems/2layer-neural-network/in/03.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
64 32 10
13 56 -80 1 -4 -17 56 -96 19 94 -99 -14 30 -1 93 -40 -31 -92 38 39 94 -33 -92 97 46 46 -20 80 0 81 -3 91 86 56 54 75 28 22 93 34 -92 19 95 45 -79 51 -94 55 93 42 91 47 87 48 -22 6 23 0 -54 -3 -49 80 4 98
27 15 -31 -23 -72 77 42 -51 9 -52 -90 94 -49 32 -37 14 -81 -23 -83 -60 -58 -31 79 67 -83 46 -72 -80 -9 79 85 -25 77 -2 -8 -88 89 -83 62 42 91 3 -90 -5 71 -38 12 83 -4 -62 93 13 -92 -52 42 42 -84 83 81 -35 61 84 -28 63
77 -90 -78 -80 -69 95 -54 -35 -22 94 -11 5 49 27 -88 47 46 31 -46 61 67 -83 88 -88 11 29 82 43 99 39 22 -23 -24 99 30 16 50 -52 90 40 19 19 33 69 65 -97 -94 50 -12 29 52 30 -98 75 81 -73 63 37 59 36 66 -96 -7 27
7 42 -19 5 52 -30 -64 64 -8 -50 37 -78 17 44 84 22 98 88 -66 -56 86 7 -79 -18 -28 -25 -18 -36 58 21 24 -57 19 -2 48 25 -96 -97 38 -59 -99 -21 18 -28 67 33 42 68 28 72 -89 -95 63 92 29 76 -70 4 -83 71 -8 -20 72 -54
-88 73 48 -18 14 84 -88 -53 24 85 79 -23 -98 -37 -3 76 -6 31 82 98 -76 23 6 -57 -48 37 -78 80 63 -100 -1 48 48 28 -77 21 77 81 12 -99 -61 86 -16 -5 99 75 -42 71 45 -13 12 62 79 -62 -80 -52 57 -78 -5 99 -38 48 -12 -66
50 -58 34 -47 -76 -57 -44 -76 45 42 47 94 54 -73 -71 7 23 -14 53 39 87 -24 55 -67 -86 70 -91 -59 -23 25 81 65 -69 65 31 63 -76 80 96 83 13 -62 8 -61 -80 30 -50 -83 41 -67 -43 28 30 -40 36 95 -64 -49 37 79 -36 -86 -61 13
-59 -84 82 -66 37 -10 90 -73 -76 74 -17 -58 -26 -99 -86 8 -49 42 -14 97 -70 -13 -66 -70 68 36 78 -93 -11 -16 -75 82 -14 51 -98 3 73 97 -69 87 39 31 96 15 -94 84 33 -10 33 -37 -54 -74 14 -100 -34 -74 -1 -13 6 74 -38 99 78 -6
16 -53 73 50 3 72 91 -52 -32 -75 -23 58 2 -81 99 -34 85 63 75 33 97 -79 25 22 57 -26 10 92 58 66 53 24 -11 -63 -34 -28 12 -13 -64 6 -40 8 -73 18 94 66 52 -41 43 38 -26 13 -52 55 -24 0 81 -87 -36 40 71 -91 27 73
99 45 98 -60 -90 4 -32 -21 42 -88 -68 -18 8 -30 76 49 72 85 -89 62 36 52 47 78 40 -6 83 78 31 18 83 -95 45 -81 59 -75 -11 -19 50 -83 -57 -51 -61 -64 -37 47 -70 -76 -62 -79 -48 51 95 -95 5 22 80 -42 -75 -52 14 -77 -72 7
71 18 -98 -54 -83 -67 -36 45 45 -10 -11 -18 -21 28 -32 32 -35 -85 44 7 4 -75 95 -33 69 17 65 -27 71 -99 95 -2 -6 91 75 -44 28 44 -99 -95 -20 -22 96 -93 98 52 -15 -15 41 66 -25 70 -81 5 98 9 -46 73 46 -14 73 -7 -92 37
-47 72 -47 -22 -45 -76 54 -85 3 -71 47 55 66 39 -100 6 -72 80 -28 -15 -69 48 -25 -90 44 -58 76 -64 34 -24 -61 88 -93 23 85 61 33 48 -92 84 -4 -2 90 -22 10 -43 -55 74 97 15 -100 -63 -46 -62 71 71 41 49 67 40 -13 -1 38 -56
60 86 -10 95 46 66 -50 68 7 -7 65 -3 8 94 48 92 38 47 70 -11 -35 -53 62 -1 4 -32 -94 99 -48 41 16 97 92 -81 -3 -81 -87 -27 69 92 -5 78 56 -46 -4 55 21 56 83 -47 -15 -3 -97 -8 44 87 -48 -99 -69 2 -88 53 -69 84
-60 38 5 82 30 70 35 15 -53 32 39 -96 -75 -71 -78 -45 -50 -35 36 15 52 -2 -83 -9 95 -98 -44 87 14 -34 -58 -45 19 -86 -56 -35 85 -25 -58 43 -5 -2 34 10 24 -53 70 -63 31 33 0 -69 -36 -72 -96 -46 -86 -34 -16 -16 97 11 76 67
31 59 -48 14 -19 58 -56 -71 -5 15 -68 -71 -52 24 -23 -9 -15 85 -70 21 -8 -54 -94 -18 -22 56 -47 28 43 -91 -64 84 40 46 -57 18 75 -2 68 3 -41 -98 46 27 97 -80 55 6 59 -36 -12 -28 -38 36 -65 52 91 -68 14 -11 -76 87 68 -64
-19 -31 45 -100 -80 8 72 -80 60 -49 48 -33 -61 -7 42 -1 44 -95 63 -37 -7 -4 -51 -22 48 -47 77 68 -27 59 -36 52 -85 -46 -92 53 -69 75 -59 84 -83 -63 50 -59 -68 41 -80 30 59 99 -17 -83 40 -66 -81 19 -36 -28 -89 -26 10 69 96 20
-70 26 62 66 -50 87 -44 -77 -9 87 -33 -54 77 -62 72 89 -25 41 -41 -57 -78 -47 72 -71 -38 95 -20 -6 40 43 -71 90 -31 -17 3 -39 78 36 61 80 7 53 60 -1 -62 -25 66 28 90 -78 17 -13 -12 47 9 -82 58 76 0 -10 -24 5 50 40
59 24 -40 -16 -61 99 -59 98 22 10 27 12 -50 37 -14 44 58 -83 -7 10 46 13 -24 -44 -23 -69 -88 22 -88 34 -19 57 14 74 15 -96 -80 -1 19 77 79 10 12 -45 73 -15 45 65 -49 -50 -95 -45 96 -2 -48 -85 11 85 -3 47 60 26 34 -89
-22 84 70 -70 66 63 -25 14 67 -98 -37 59 -23 -19 57 86 40 -56 -90 39 31 -34 47 -82 -82 -23 93 -68 -49 -84 -80 -8 -64 -9 50 61 -32 -34 -97 93 -7 22 -95 -27 -34 -46 25 -33 22 -66 -57 -96 75 2 -49 84 -74 -94 -100 -14 57 87 -15 43
84 95 -94 79 -43 -86 -55 27 72 -88 -88 15 60 -84 67 -10 17 81 -100 89 5 48 -54 -89 -96 22 -82 75 53 23 -27 -64 -5 -60 5 14 -36 -8 -48 -28 -65 -88 69 -5 74 91 -94 -23 21 13 -90 -70 11 -44 -88 -15 -71 -50 -40 42 -88 92 -43 -50
92 73 35 -28 7 -43 33 97 -73 59 -13 -21 45 73 86 89 12 -45 13 -83 -7 -81 -27 -9 17 54 -35 51 -97 22 -21 -71 28 59 -12 -63 21 42 30 30 66 -45 9 -64 14 -92 91 -6 -56 -5 -61 -25 91 20 61 5 -97 -6 -75 89 -37 60 -29 -66
60 33 -8 -95 -71 -86 -89 32 -30 9 -31 -30 -20 -67 51 87 80 -72 -93 -29 -98 -28 58 69 7 90 66 18 93 5 -33 94 -8 -29 -39 -7 35 88 2 -82 -50 -16 92 -70 -57 -79 -34 -61 19 39 -24 57 -83 -11 43 -76 -65 -4 -27 -98 53 48 -18 -72
-49 -87 -73 -11 61 -29 17 78 -23 15 -4 82 -12 -71 -65 41 65 50 29 -21 23 25 -68 -14 86 48 -82 12 39 40 92 -13 -31 -73 79 56 -26 8 58 -27 40 -47 -52 81 -49 52 3 -37 46 -77 -100 -96 76 37 -88 68 42 -1 97 34 35 54 -18 96
-6 -51 96 -82 -41 63 -7 73 -97 32 -26 -87 -49 -5 35 -51 -44 -19 -67 -59 -87 -15 -56 -37 60 -31 70 99 -79 -64 -50 57 -62 39 4 -45 -22 -53 61 -96 73 -6 -55 -65 -25 42 6 -41 -3 34 -90 51 40 36 -13 -8 -35 6 -60 70 -5 -73 37 -82
15 -40 -72 -76 33 85 61 13 15 23 -30 92 -20 27 -25 97 -38 -16 -7 82 17 67 19 -54 8 -60 54 45 -69 24 -82 -46 62 13 -50 21 -82 -83 -29 94 -65 36 16 -11 -64 -27 -48 -8 84 -17 56 -26 -77 -55 97 -68 -57 -16 41 -46 90 -78 -31 -30
55 -83 -20 13 -51 22 36 -21 34 15 17 -67 -36 -98 13 40 -68 -99 53 -27 84 67 -22 -18 25 16 50 93 -9 -34 -67 57 -50 4 20 -28 -8 94 -2 2 -36 79 25 -55 79 -83 -52 -20 89 -96 14 -59 36 43 91 -26 74 -42 -56 90 29 84 -67 -36
-24 35 60 93 13 52 -100 36 -5 -65 -94 40 -37 21 71 25 21 -59 25 35 47 59 66 -85 -24 -22 55 49 92 -44 -74 -53 -15 92 67 -16 26 18 68 23 -68 -32 2 41 -86 -63 63 -57 25 40 -65 48 38 92 95 -5 43 67 -92 86 89 -46 -84 -90
-26 18 33 49 78 93 75 92 -24 -39 -67 -64 -87 22 -75 25 -48 -83 52 59 40 86 9 -30 -91 -1 -98 -27 38 -1 54 49 82 -24 -61 -39 56 74 23 -12 -83 -55 89 -21 -81 -94 19 -5 -58 38 89 -64 33 77 97 32 75 85 -90 79 89 -18 94 -86
-49 62 53 -76 -11 -46 50 -24 -70 -24 -67 -45 45 -76 58 -8 -31 22 76 -97 83 71 -8 -30 43 87 46 -15 7 39 -96 16 -96 -46 51 15 -86 -75 59 -75 12 -8 -50 -7 -83 -18 -6 -21 68 -25 -82 50 9 17 -51 -42 80 43 87 49 -95 3 -21 -6
6 -7 18 54 71 13 86 82 -12 85 7 -68 -96 -3 -63 73 -75 88 3 -64 87 -29 84 -95 -35 -13 28 -49 -70 6 10 31 76 88 -12 95 81 38 17 51 67 65 41 4 41 45 -27 56 85 13 -47 -83 -60 -21 -10 -27 81 59 -4 22 86 50 66 -71
59 73 -47 -82 45 -3 -43 79 91 93 5 -83 68 -15 -67 33 -79 -86 -3 28 10 -30 49 73 -21 3 -65 26 -14 86 -42 -27 -68 -84 -93 -21 -36 -39 27 44 -63 -54 56 -62 37 -25 66 -75 -63 -45 77 58 -7 -52 -69 34 80 -35 -40 89 -29 45 -21 55
-11 -82 -74 -6 70 19 -45 44 35 -15 -46 -75 73 69 52 81 -13 12 -86 -88 -93 -63 -10 -54 7 -63 -59 24 44 -74 61 18 31 -18 38 -17 -66 6 -46 -67 7 -7 -17 -29 63 -25 44 45 49 -18 32 -59 -82 60 66 40 62 16 -86 50 50 -57 81 95
-16 77 -50 -37 18 10 -61 81 92 23 53 92 -78 -77 98 -83 55 -90 -83 -28 74 -94 -86 58 0 10 -74 -31 24 88 -40 55 39 10 42 86 -75 41 44 -83 -74 29 -62 13 -22 -88 72 45 62 40 65 -29 -46 -21 99 -14 -51 -53 -47 35 86 30 -97 60
41 -3 -57 -85 -8 24 96 -4 -67 -20 16 36 6 -45 -40 -99 -9 -38 32 -47 -100 -88 42 -63 49 29 44 64 43 -100 38 32 11 47 -10 -11 12 -90 -45 74 -1 42 81 -75 47 0 49 -48 49 -46 23 58 -68 34 -32 16 62 -34 -7 66 51 -17 25 -84
96 -9 -68 19 70 -22 89 -58 -31 31 4 -26 -63 44 34 -56 22 -13 -45 -62 89 -12 71 -25 -96 -53 2 -50 13 0 -5 -79
87 -8 -58 4 -92 5 -75 -70 -29 89 18 30 81 19 16 -39 38 41 31 -77 82 58 -69 -16 -7 41 -48 -34 -98 62 -52 5
-36 -46 4 82 -38 -71 26 -31 -12 21 -57 44 -55 16 98 -44 -95 -49 69 71 -38 33 -27 14 25 -87 45 -78 -5 95 -17 -64
-27 15 -62 84 -21 91 8 -37 -57 67 89 86 -95 21 -95 87 -23 14 15 34 -46 -86 17 -7 50 84 54 41 1 -45 25 7
76 72 -30 -30 -57 95 -59 -99 83 85 33 11 5 18 72 -46 69 31 77 -49 82 35 -61 3 65 73 75 -65 -76 76 78 -84
-10 -12 -36 72 14 -17 -43 53 5 -78 11 -75 3 37 -38 -9 69 59 69 -3 55 -59 -50 4 -99 42 85 -8 -21 76 74 13
-74 -25 -92 -42 68 -61 98 23 38 3 -22 -58 -22 -31 23 -25 -52 20 42 72 74 -100 94 9 -21 39 -48 43 56 30 69 -93
-43 -94 61 -32 7 -2 79 25 46 -22 -42 -80 35 -77 67 39 -23 31 -77 -93 41 6 -76 21 83 -53 -55 44 4 -71 67 -66
89 33 21 42 30 58 -25 -51 52 -10 -25 28 35 -79 68 -78 72 16 27 -26 43 8 -4 -14 -1 91 -38 54 -55 -72 33 15
-61 25 29 -48 -45 43 99 96 59 79 -13 -70 -19 -66 51 -38 -61 62 -96 -13 -67 -49 -31 -90 -55 15 84 -56 73 40 87 10
-51 -89 27 48 -12 24 57 -19 93 -78 -69 -23 75 -53 -85 -6 -100 88 -23 -77 29 -71 -77 -10 36 -41 33 51 5 72 -80 -46
0 -39 -92 86 86 72 67 55 59 -33
Loading