Skip to content

[fixes #2130] Moving Properties.HeytingAlgebra from Relation.Binary to Relation.Binary.Lattice #2131

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Oct 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -1253,6 +1253,7 @@ Deprecated modules
Relation.Binary.Properties.BoundedLattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedLattice.agda
Relation.Binary.Properties.BoundedMeetSemilattice.agda ↦ Relation.Binary.Lattice.Properties.BoundedMeetSemilattice.agda
Relation.Binary.Properties.DistributiveLattice.agda ↦ Relation.Binary.Lattice.Properties.DistributiveLattice.agda
Relation.Binary.Properties.HeytingAlgebra.agda ↦ Relation.Binary.Lattice.Properties.HeytingAlgebra.agda
Relation.Binary.Properties.JoinSemilattice.agda ↦ Relation.Binary.Lattice.Properties.JoinSemilattice.agda
Relation.Binary.Properties.Lattice.agda ↦ Relation.Binary.Lattice.Properties.Lattice.agda
Relation.Binary.Properties.MeetSemilattice.agda ↦ Relation.Binary.Lattice.Properties.MeetSemilattice.agda
Expand Down
199 changes: 199 additions & 0 deletions src/Relation/Binary/Lattice/Properties/HeytingAlgebra.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by Heyting Algebra
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Relation.Binary.Lattice

module Relation.Binary.Lattice.Properties.HeytingAlgebra
{c ℓ₁ ℓ₂} (L : HeytingAlgebra c ℓ₁ ℓ₂) where

open HeytingAlgebra L

open import Algebra.Core
open import Algebra.Definitions _≈_
open import Data.Product.Base using (_,_)
open import Function.Base using (_$_; flip; _∘_)
open import Level using (_⊔_)
open import Relation.Binary.Core using (_Preserves_⟶_; _Preserves₂_⟶_⟶_)
import Relation.Binary.Reasoning.PartialOrder as POR
open import Relation.Binary.Lattice.Properties.MeetSemilattice meetSemilattice
open import Relation.Binary.Lattice.Properties.JoinSemilattice joinSemilattice
import Relation.Binary.Lattice.Properties.BoundedMeetSemilattice boundedMeetSemilattice as BM
open import Relation.Binary.Lattice.Properties.Lattice lattice
open import Relation.Binary.Lattice.Properties.BoundedLattice boundedLattice
import Relation.Binary.Reasoning.Setoid as EqReasoning

------------------------------------------------------------------------
-- Useful lemmas

⇨-eval : ∀ {x y} → (x ⇨ y) ∧ x ≤ y
⇨-eval {x} {y} = transpose-∧ refl

swap-transpose-⇨ : ∀ {x y w} → x ∧ w ≤ y → w ≤ x ⇨ y
swap-transpose-⇨ x∧w≤y = transpose-⇨ $ trans (reflexive $ ∧-comm _ _) x∧w≤y

------------------------------------------------------------------------
-- Properties of exponential

⇨-unit : ∀ {x} → x ⇨ x ≈ ⊤
⇨-unit = antisym (maximum _) (transpose-⇨ $ reflexive $ BM.identityˡ _)

y≤x⇨y : ∀ {x y} → y ≤ x ⇨ y
y≤x⇨y = transpose-⇨ (x∧y≤x _ _)

⇨-drop : ∀ {x y} → (x ⇨ y) ∧ y ≈ y
⇨-drop = antisym (x∧y≤y _ _) (∧-greatest y≤x⇨y refl)

⇨-app : ∀ {x y} → (x ⇨ y) ∧ x ≈ y ∧ x
⇨-app = antisym (∧-greatest ⇨-eval (x∧y≤y _ _)) (∧-monotonic y≤x⇨y refl)

⇨ʳ-covariant : ∀ {x} → (x ⇨_) Preserves _≤_ ⟶ _≤_
⇨ʳ-covariant y≤z = transpose-⇨ (trans ⇨-eval y≤z)

⇨ˡ-contravariant : ∀ {x} → (_⇨ x) Preserves (flip _≤_) ⟶ _≤_
⇨ˡ-contravariant z≤y = transpose-⇨ (trans (∧-monotonic refl z≤y) ⇨-eval)

⇨-relax : _⇨_ Preserves₂ (flip _≤_) ⟶ _≤_ ⟶ _≤_
⇨-relax {x} {y} {u} {v} y≤x u≤v = begin
x ⇨ u ≤⟨ ⇨ʳ-covariant u≤v ⟩
x ⇨ v ≤⟨ ⇨ˡ-contravariant y≤x ⟩
y ⇨ v ∎
where open POR poset

⇨-cong : _⇨_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_
⇨-cong x≈y u≈v = antisym (⇨-relax (reflexive $ Eq.sym x≈y) (reflexive u≈v))
(⇨-relax (reflexive x≈y) (reflexive $ Eq.sym u≈v))

⇨-applyˡ : ∀ {w x y} → w ≤ x → (x ⇨ y) ∧ w ≤ y
⇨-applyˡ = transpose-∧ ∘ ⇨ˡ-contravariant

⇨-applyʳ : ∀ {w x y} → w ≤ x → w ∧ (x ⇨ y) ≤ y
⇨-applyʳ w≤x = trans (reflexive (∧-comm _ _)) (⇨-applyˡ w≤x)

⇨-curry : ∀ {x y z} → x ∧ y ⇨ z ≈ x ⇨ y ⇨ z
⇨-curry = antisym (transpose-⇨ $ transpose-⇨ $ trans (reflexive $ ∧-assoc _ _ _) ⇨-eval)
(transpose-⇨ $ trans (reflexive $ Eq.sym $ ∧-assoc _ _ _)
(transpose-∧ $ ⇨-applyˡ refl))

------------------------------------------------------------------------
-- Various proofs of distributivity

∧-distribˡ-∨-≤ : ∀ x y z → x ∧ (y ∨ z) ≤ x ∧ y ∨ x ∧ z
∧-distribˡ-∨-≤ x y z = trans (reflexive $ ∧-comm _ _)
(transpose-∧ $ ∨-least (swap-transpose-⇨ (x≤x∨y _ _)) $ swap-transpose-⇨ (y≤x∨y _ _))

∧-distribˡ-∨-≥ : ∀ x y z → x ∧ y ∨ x ∧ z ≤ x ∧ (y ∨ z)
∧-distribˡ-∨-≥ x y z = let
x∧y≤x , x∧y≤y , _ = infimum x y
x∧z≤x , x∧z≤z , _ = infimum x z
y≤y∨z , z≤y∨z , _ = supremum y z
in ∧-greatest (∨-least x∧y≤x x∧z≤x)
(∨-least (trans x∧y≤y y≤y∨z) (trans x∧z≤z z≤y∨z))

∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_
∧-distribˡ-∨ x y z = antisym (∧-distribˡ-∨-≤ x y z) (∧-distribˡ-∨-≥ x y z)

⇨-distribˡ-∧-≤ : ∀ x y z → x ⇨ y ∧ z ≤ (x ⇨ y) ∧ (x ⇨ z)
⇨-distribˡ-∧-≤ x y z = let
y∧z≤y , y∧z≤z , _ = infimum y z
in ∧-greatest (transpose-⇨ $ trans ⇨-eval y∧z≤y)
(transpose-⇨ $ trans ⇨-eval y∧z≤z)

⇨-distribˡ-∧-≥ : ∀ x y z → (x ⇨ y) ∧ (x ⇨ z) ≤ x ⇨ y ∧ z
⇨-distribˡ-∧-≥ x y z = transpose-⇨ (begin
(((x ⇨ y) ∧ (x ⇨ z)) ∧ x) ≈⟨ ∧-cong Eq.refl $ Eq.sym $ ∧-idempotent _ ⟩
(((x ⇨ y) ∧ (x ⇨ z)) ∧ x ∧ x) ≈⟨ Eq.sym $ ∧-assoc _ _ _ ⟩
(((x ⇨ y) ∧ (x ⇨ z)) ∧ x) ∧ x ≈⟨ ∧-cong (∧-assoc _ _ _) Eq.refl ⟩
(((x ⇨ y) ∧ (x ⇨ z) ∧ x) ∧ x) ≈⟨ ∧-cong (∧-cong Eq.refl $ ∧-comm _ _) Eq.refl ⟩
(((x ⇨ y) ∧ x ∧ (x ⇨ z)) ∧ x) ≈⟨ ∧-cong (Eq.sym $ ∧-assoc _ _ _) Eq.refl ⟩
(((x ⇨ y) ∧ x) ∧ (x ⇨ z)) ∧ x ≈⟨ ∧-assoc _ _ _ ⟩
(((x ⇨ y) ∧ x) ∧ (x ⇨ z) ∧ x) ≤⟨ ∧-monotonic ⇨-eval ⇨-eval ⟩
y ∧ z ∎)
where open POR poset

⇨-distribˡ-∧ : _⇨_ DistributesOverˡ _∧_
⇨-distribˡ-∧ x y z = antisym (⇨-distribˡ-∧-≤ x y z) (⇨-distribˡ-∧-≥ x y z)

⇨-distribˡ-∨-∧-≤ : ∀ x y z → x ∨ y ⇨ z ≤ (x ⇨ z) ∧ (y ⇨ z)
⇨-distribˡ-∨-∧-≤ x y z = let x≤x∨y , y≤x∨y , _ = supremum x y
in ∧-greatest (transpose-⇨ $ trans (∧-monotonic refl x≤x∨y) ⇨-eval)
(transpose-⇨ $ trans (∧-monotonic refl y≤x∨y) ⇨-eval)

⇨-distribˡ-∨-∧-≥ : ∀ x y z → (x ⇨ z) ∧ (y ⇨ z) ≤ x ∨ y ⇨ z
⇨-distribˡ-∨-∧-≥ x y z = transpose-⇨ (trans (reflexive $ ∧-distribˡ-∨ _ _ _)
(∨-least (trans (transpose-∧ (x∧y≤x _ _)) refl)
(trans (transpose-∧ (x∧y≤y _ _)) refl)))

⇨-distribˡ-∨-∧ : ∀ x y z → x ∨ y ⇨ z ≈ (x ⇨ z) ∧ (y ⇨ z)
⇨-distribˡ-∨-∧ x y z = antisym (⇨-distribˡ-∨-∧-≤ x y z) (⇨-distribˡ-∨-∧-≥ x y z)

------------------------------------------------------------------------
-- Heyting algebras are distributive lattices

isDistributiveLattice : IsDistributiveLattice _≈_ _≤_ _∨_ _∧_
isDistributiveLattice = record
{ isLattice = isLattice
; ∧-distribˡ-∨ = ∧-distribˡ-∨
}

distributiveLattice : DistributiveLattice _ _ _
distributiveLattice = record
{ isDistributiveLattice = isDistributiveLattice
}

------------------------------------------------------------------------
-- Heyting algebras can define pseudo-complement

infix 8 ¬_

¬_ : Op₁ Carrier
¬ x = x ⇨ ⊥

x≤¬¬x : ∀ x → x ≤ ¬ ¬ x
x≤¬¬x x = transpose-⇨ (trans (reflexive (∧-comm _ _)) ⇨-eval)

------------------------------------------------------------------------
-- De-Morgan laws

de-morgan₁ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y
de-morgan₁ x y = ⇨-distribˡ-∨-∧ _ _ _

de-morgan₂-≤ : ∀ x y → ¬ (x ∧ y) ≤ ¬ ¬ (¬ x ∨ ¬ y)
de-morgan₂-≤ x y = transpose-⇨ $ begin
¬ (x ∧ y) ∧ ¬ (¬ x ∨ ¬ y) ≈⟨ ∧-cong ⇨-curry (de-morgan₁ _ _) ⟩
(x ⇨ ¬ y) ∧ ¬ ¬ x ∧ ¬ ¬ y ≈⟨ ∧-cong Eq.refl (∧-comm _ _) ⟩
(x ⇨ ¬ y) ∧ ¬ ¬ y ∧ ¬ ¬ x ≈⟨ Eq.sym $ ∧-assoc _ _ _ ⟩
((x ⇨ ¬ y) ∧ ¬ ¬ y) ∧ ¬ ¬ x ≤⟨ ⇨-applyʳ $ transpose-⇨ $
begin
((x ⇨ ¬ y) ∧ ¬ ¬ y) ∧ x ≈⟨ ∧-cong (∧-comm _ _) Eq.refl ⟩
((¬ ¬ y) ∧ (x ⇨ ¬ y)) ∧ x ≈⟨ ∧-assoc _ _ _ ⟩
(¬ ¬ y) ∧ (x ⇨ ¬ y) ∧ x ≤⟨ ∧-monotonic refl ⇨-eval ⟩
¬ ¬ y ∧ ¬ y ≤⟨ ⇨-eval ⟩
⊥ ∎ ⟩
⊥ ∎
where open POR poset

de-morgan₂-≥ : ∀ x y → ¬ ¬ (¬ x ∨ ¬ y) ≤ ¬ (x ∧ y)
de-morgan₂-≥ x y = transpose-⇨ $ ⇨-applyˡ $ transpose-⇨ $ begin
(x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩
(x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≤⟨ ∨-monotonic (⇨-applyʳ (x∧y≤x _ _))
(⇨-applyʳ (x∧y≤y _ _)) ⟩
⊥ ∨ ⊥ ≈⟨ ∨-idempotent _ ⟩
⊥ ∎
where open POR poset

de-morgan₂ : ∀ x y → ¬ (x ∧ y) ≈ ¬ ¬ (¬ x ∨ ¬ y)
de-morgan₂ x y = antisym (de-morgan₂-≤ x y) (de-morgan₂-≥ x y)

weak-lem : ∀ {x} → ¬ ¬ (¬ x ∨ x) ≈ ⊤
weak-lem {x} = begin
¬ ¬ (¬ x ∨ x) ≈⟨ ⇨-cong (de-morgan₁ _ _) Eq.refl ⟩
¬ (¬ ¬ x ∧ ¬ x) ≈⟨ ⇨-cong ⇨-app Eq.refl ⟩
⊥ ∧ (x ⇨ ⊥) ⇨ ⊥ ≈⟨ ⇨-cong (∧-zeroˡ _) Eq.refl ⟩
⊥ ⇨ ⊥ ≈⟨ ⇨-unit ⟩
⊤ ∎
where open EqReasoning setoid
Loading