Implementation of Graph Convolutional Networks for Text Classification [1].
Tested on the 20NG/R8/R52/Ohsumed/MR data set, the code on this repository can achieve the effect of the paper.
dataset | 20NG | R8 | R52 | Ohsumed | MR |
---|---|---|---|---|---|
yao8839836 (official) | 0.8634 | 0.9707 | 0.9356 | 0.6836 | 0.7674 |
chengsen | 0.8618 | 0.9704 | 0.9354 | 0.6827 | 0.7643 |
this repo | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
NOTE: The result of the experiment is to repeat the run 1.
Adding dataset kontan1: Multiclass classification (5 class), news in Indonesia. Accuracy: 0.000
Adding dataset kontan2: Sentiment classification, news in Indonesia. Accuracy: 0.000
- python==3.8.13
- fastai==2.0.15
- torch==1.10.2
- scipy==1.5.2
- pandas==1.3.5
- spacy==2.3.1
- nltk==3.7
- prettytable==1.0.0
- numpy==1.21.5
- networkx==2.6.3
- tqdm==4.62.3
- scikit_learn==1.1.2
- matplotlib==3.5.2
- Process the data first, run
data_processor.py
- Generate graph, run
build_graph.py
- Training model, run
trainer.py
add -h for help on each usage command.
[1] Yao, L. , Mao, C. , & Luo, Y. . (2018). Graph convolutional networks for text classification.