Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Alexnet Example #685

Merged
merged 1 commit into from
Apr 22, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 103 additions & 0 deletions examples/cnn/model/alexnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#

from singa import autograd
from singa import module


class AlexNet(module.Module):

def __init__(self, num_classes=10, num_channels=1):
super(AlexNet, self).__init__()
self.num_classes = num_classes
self.input_size = 224
self.dimension = 4
self.conv1 = autograd.Conv2d(num_channels, 64, 11, stride=4, padding=2)
self.conv2 = autograd.Conv2d(64, 192, 5, padding=2)
self.conv3 = autograd.Conv2d(192, 384, 3, padding=1)
self.conv4 = autograd.Conv2d(384, 256, 3, padding=1)
self.conv5 = autograd.Conv2d(256, 256, 3, padding=1)
self.linear1 = autograd.Linear(1024, 4096)
self.linear2 = autograd.Linear(4096, 4096)
self.linear3 = autograd.Linear(4096, num_classes)
self.pooling1 = autograd.MaxPool2d(2, 2, padding=0)
self.pooling2 = autograd.MaxPool2d(2, 2, padding=0)
self.pooling3 = autograd.MaxPool2d(2, 2, padding=0)
self.avg_pooling1 = autograd.AvgPool2d(3, 2, padding=0)

def forward(self, x):
y = self.conv1(x)
y = autograd.relu(y)
y = self.pooling1(y)
y = self.conv2(y)
y = autograd.relu(y)
y = self.pooling2(y)
y = self.conv3(y)
y = autograd.relu(y)
y = self.conv4(y)
y = autograd.relu(y)
y = self.conv5(y)
y = autograd.relu(y)
y = self.pooling3(y)
y = self.avg_pooling1(y)
y = autograd.flatten(y)
y = autograd.dropout(y)
y = self.linear1(y)
y = autograd.relu(y)
y = autograd.dropout(y)
y = self.linear2(y)
y = autograd.relu(y)
y = self.linear3(y)
return y

def loss(self, out, ty):
return autograd.softmax_cross_entropy(out, ty)

def optim(self, loss, dist_option, spars):
if dist_option == 'fp32':
self.optimizer.backward_and_update(loss)
elif dist_option == 'fp16':
self.optimizer.backward_and_update_half(loss)
elif dist_option == 'partialUpdate':
self.optimizer.backward_and_partial_update(loss)
elif dist_option == 'sparseTopK':
self.optimizer.backward_and_sparse_update(loss,
topK=True,
spars=spars)
elif dist_option == 'sparseThreshold':
self.optimizer.backward_and_sparse_update(loss,
topK=False,
spars=spars)

def set_optimizer(self, optimizer):
self.optimizer = optimizer


def create_model(pretrained=False, **kwargs):
"""Constructs a AlexNet model.

Args:
pretrained (bool): If True, returns a model pre-trained
"""
model = AlexNet(**kwargs)

return model


__all__ = ['AlexNet', 'create_model']
6 changes: 5 additions & 1 deletion examples/cnn/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -133,6 +133,10 @@ def run(global_rank,
from model import cnn
model = cnn.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'alexnet':
from model import alexnet
model = alexnet.create_model(num_channels=num_channels,
num_classes=num_classes)
elif model == 'mlp':
import os, sys, inspect
current = os.path.dirname(
Expand Down Expand Up @@ -258,7 +262,7 @@ def run(global_rank,
parser = argparse.ArgumentParser(
description='Training using the autograd and graph.')
parser.add_argument('model',
choices=['resnet', 'xceptionnet', 'cnn', 'mlp'],
choices=['resnet', 'xceptionnet', 'cnn', 'mlp', 'alexnet'],
default='cnn')
parser.add_argument('data',
choices=['cifar10', 'cifar100', 'mnist'],
Expand Down