Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DRAFT: try to remove code duplication for different datatypes using macro #8

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 26 additions & 62 deletions src/expressions.rs
Original file line number Diff line number Diff line change
Expand Up @@ -103,79 +103,43 @@ fn tdigest_fields() -> Vec<Field> {
// chunks
// }

// Todo support other numerical types
#[polars_expr(output_type_func=tdigest_output)]
fn tdigest(inputs: &[Series]) -> PolarsResult<Series> {
let series = &inputs[0];
// TODO: pooling is not feasible on small datasets
let chunks = match series.dtype() {
DataType::Float64 => {
let values = series.f64()?;
let chunks: Vec<TDigest> = POOL.install(|| {
values
.downcast_iter()
.par_bridge()
.map(|chunk| {
let t = TDigest::new_with_size(100);
let array = chunk.as_any().downcast_ref::<Float64Array>().unwrap();
let val_vec: Vec<f64> = array.non_null_values_iter().collect();
t.merge_unsorted(val_vec.to_owned())
})
.collect::<Vec<TDigest>>()
});
chunks
}
DataType::Float32 => {
let values = series.f32()?;
let chunks: Vec<TDigest> = POOL.install(|| {
values
.downcast_iter()
.par_bridge()
.map(|chunk| {
let t = TDigest::new_with_size(100);
let array = chunk.as_any().downcast_ref::<Float32Array>().unwrap();
let val_vec: Vec<f64> =
array.non_null_values_iter().map(|v| (v as f64)).collect();
t.merge_unsorted(val_vec.to_owned())
})
.collect::<Vec<TDigest>>()
});
chunks
}
DataType::Int64 => {
let values = series.i64()?;
macro_rules! gen {
($func:ident, $a_f64:ident, $a_Float64Array: ident) => {
fn $func(series: &Series) -> PolarsResult<Vec<TDigest>> {
let values = series.$a_f64()?;
let chunks: Vec<TDigest> = POOL.install(|| {
values
.downcast_iter()
.par_bridge()
.map(|chunk| {
let t = TDigest::new_with_size(100);
let array = chunk.as_any().downcast_ref::<Int64Array>().unwrap();
let val_vec: Vec<f64> =
array.non_null_values_iter().map(|v| (v as f64)).collect();
let array = chunk.as_any().downcast_ref::<$a_Float64Array>().unwrap();
let val_vec: Vec<f64> = array.non_null_values_iter().map(|v| (v as f64)).collect();
t.merge_unsorted(val_vec.to_owned())
})
.collect::<Vec<TDigest>>()
});
chunks
}
DataType::Int32 => {
let values = series.i32()?;
let chunks: Vec<TDigest> = POOL.install(|| {
values
.downcast_iter()
.par_bridge()
.map(|chunk| {
let t = TDigest::new_with_size(100);
let array = chunk.as_any().downcast_ref::<Int32Array>().unwrap();
let val_vec: Vec<f64> =
array.non_null_values_iter().map(|v| (v as f64)).collect();
t.merge_unsorted(val_vec.to_owned())
})
.collect::<Vec<TDigest>>()
});
chunks
Ok(chunks)
}
};
}

gen!(gen_f64, f64, Float64Array);
gen!(gen_f32, f32, Float32Array);
gen!(gen_i64, i64, Int64Array);
gen!(gen_i32, i32, Int32Array);


// Todo support other numerical types
#[polars_expr(output_type_func=tdigest_output)]
fn tdigest(inputs: &[Series]) -> PolarsResult<Series> {
let series = &inputs[0];
// TODO: pooling is not feasible on small datasets
let chunks = match series.dtype() {
DataType::Float64 => gen_f64(series)?,
DataType::Float32 => gen_f32(series)?,
DataType::Int64 => gen_i64(series)?,
DataType::Int32 => gen_i32(series)?,
_ => polars_bail!(InvalidOperation: "only supported for numerical types"),
};

Expand Down
Loading