NEMO is a deep learning tool designed to predict DNA modifications using nanopore long-read chromatin accessibility data. It allows users to train neural network models, predict modifications, and visualize results.
- Clone the repository
git clone https://github.com/baigal628/NEMO.git
cd NEMO
- Create and activate the conda environment:
conda create -n nemo python=3.9
conda activate nemo
- Install dependencies:
pip install -r requirements.txt
cd NEMO/test/sh/
Basecall data using dorado: https://github.com/nanoporetech/dorado
dorado basecaller [email protected] \
../input/test.pod5 \
--emit-moves \
--device cuda:all \
--reference ../input/sacCer3.fa > ../input/test_reads.bam
Signal-to-Event Alignment: https://github.com/cafelton/pod5-to-kmer-signal
python3 ../../src/ref/bampod5kmersig-witharrow-sigalign.py \
-b ../input/test_reads.bam \
-p ../input/test.pod5
-o ../input/test
Preprocessed negative and positive data ar provided under ./nemo/test/output/
python3 ../../src/train.py \
--exp_id test_r10 \
--neg_data ../output/can-sigalign.parquet \
--pos_data ../output/mod-sigalign.parquet \
--batch_size 256 \
--seq_len 400 \
--model_type resnet \
--outpath ../output/ \
--save_test \
--epochs 5 \
--steps_per_epoch 20 \
--val_steps_per_epoch 10
python3 ../../src/test.py \
--exp_id test_r10 \
--model_type resnet \
--test_dataset ../output/test_dataset_test_r10_resnet.pt \
--weight ../output/test_r10_resnet_best_model.pt \
--outpath ../output/ \
--batch_size 256
python3 ../../src/predict.py \
--bam ../input/test_reads.bam \
--parquet ../output/test.parquet \
--region 'chrI:500-2500' \
--seq_len 400 \
--step 200 \
--weight ../output/test_r10_resnet_best_model.pt \
--thread 4 \
--outpath ../output/ \
--prefix mod_prediction \
--batch_size 216 \
python3 ../../src/plot.py \
--plot aggregate \
--pred ../output/mod_prediction.tsv \
--bed TSS.bed \
--ref ../input/sacCer3.fa \
--label 6mA \
--outpath ../output/ \
--prefix mod_prediction
Probing chromatin accessibility with small molecule DNA intercalation and nanopore sequencing
Gali Bai*, Namrita Dhillon*, Colette Felton*, Brett Meissner*, Brandon Saint-John*, Robert Shelansky*, Elliot Meyerson, Eva Hrabeta-Robinson, Babak Hodjat, Hinrich Boeger, Angela N. Brooks bioRxiv 2024.03.20.585815; doi: https://doi.org/10.1101/2024.03.20.585815
We welcome contributions! Feel free to submit issues or pull requests to improve NEMO.
Developed with ❤️ by Brooks Lab and Cognizant AI Labs. Thanks to the contributors and open-source community for their support!