Skip to content

Toosdai otte #255

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 6 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 15 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,29 +8,31 @@

### Day 1: Get `print8.ls8` running

- [ ] Inventory what is here
- [ ] Implement the `CPU` constructor
- [ ] Add RAM functions `ram_read()` and `ram_write()`
- [ ] Implement the core of `run()`
- [ ] Implement the `HLT` instruction handler
- [ ] Add the `LDI` instruction
- [ ] Add the `PRN` instruction
- [x] Inventory what is here
- cpu.py: defines CPU class (has commands listed out)
- ls8.py: uses a CPU instance to run a program
- [x] Implement the `CPU` constructor
- [x] Add RAM functions `ram_read()` and `ram_write()`
- [x] Implement the core of `run()`
- [x] Implement the `HLT` instruction handler
- [x] Add the `LDI` instruction
- [x] Add the `PRN` instruction

### Day 2: Add the ability to load files dynamically, get `mult.ls8` running

- [ ] Un-hardcode the machine code
- [ ] Implement the `load()` function to load an `.ls8` file given the filename
- [x] Un-hardcode the machine code
- [x] Implement the `load()` function to load an `.ls8` file given the filename
passed in as an argument
- [ ] Implement a Multiply instruction (run `mult.ls8`)
- [x] Implement a Multiply instruction (run `mult.ls8`)

### Day 3: Stack

- [ ] Implement the System Stack and be able to run the `stack.ls8` program
- [x] Implement the System Stack and be able to run the `stack.ls8` program

### Day 4: Get `call.ls8` running

- [ ] Implement the CALL and RET instructions
- [ ] Implement Subroutine Calls and be able to run the `call.ls8` program
- [x] Implement the CALL and RET instructions
- [x] Implement Subroutine Calls and be able to run the `call.ls8` program

### Stretch

Expand Down
190 changes: 167 additions & 23 deletions ls8/cpu.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,44 +2,92 @@

import sys

HLT = 0b00000001
LDI = 0b10000010
PRN = 0b01000111
MUL = 0b10100010
ADD = 0b10100000
PUSH = 0b01000101
POP = 0b01000110
CALL = 0b01010000
RET = 0b00010001

CMP = 0b10100111
JEQ = 0b01010101
JNE = 0b01010110
JMP = 0b01010100

class CPU:
"""Main CPU class."""

def __init__(self):
"""Construct a new CPU."""
pass

# Set RAM
self.ram = [0] * 256
# Create registers
self.reg = [0] * 8
self.reg[7] = 0XF4
self.reg[6] = 0
# Set program counter to 0
self.pc = 0
self.running = True

self.branchtable = {
HLT: self.hlt,
LDI: self.ldi,
PRN: self.prn,
PUSH: self.push,
POP: self.pop,
CALL: self.call,
RET: self.ret,
JEQ: self.jeq,
JNE: self.jne,
JMP: self.jmp,
}


def load(self):
"""Load a program into memory."""

address = 0

# For now, we've just hardcoded a program:

program = [
# From print8.ls8
0b10000010, # LDI R0,8
0b00000000,
0b00001000,
0b01000111, # PRN R0
0b00000000,
0b00000001, # HLT
]

for instruction in program:
self.ram[address] = instruction
address += 1

try:
with open(sys.argv[1]) as f:
address = 0
for line in f:
maybe_binary_number = line[:line.find('#')]
if maybe_binary_number == '':
continue
denary_int = int(maybe_binary_number, 2)
self.ram[address] = denary_int
address += 1
except FileNotFoundError:
print(f'Error from {sys.argv[0]}: {sys.argv[1]} not found ')
sys.exit()

def alu(self, op, reg_a, reg_b):
"""ALU operations."""

if op == "ADD":
if op == ADD:
self.reg[reg_a] += self.reg[reg_b]
#elif op == "SUB": etc
elif op == MUL:
self.reg[reg_a] *= self.reg[reg_b]
elif op == CMP: # compare
if self.reg[reg_a] < self.reg[reg_b]:
self.reg[6] = 0b00000100
elif self.reg[reg_a] > self.reg[reg_b]:
self.reg[6] = 0b00000010
else:
self.reg[6] = 0b00000001
else:
raise Exception("Unsupported ALU operation")

def ram_read(self, address):
return self.ram[address]

def ram_write(self, address, value):
self.ram[address] = value


def trace(self):
"""
Handy function to print out the CPU state. You might want to call this
Expand All @@ -48,7 +96,7 @@ def trace(self):

print(f"TRACE: %02X | %02X %02X %02X |" % (
self.pc,
#self.fl,
# self.fl,
#self.ie,
self.ram_read(self.pc),
self.ram_read(self.pc + 1),
Expand All @@ -62,4 +110,100 @@ def trace(self):

def run(self):
"""Run the CPU."""
pass
IR = []
self.running = True
while self.running:
IR = self.ram[self.pc]
num_args = IR >> 6
is_alu_op = (IR >> 5) & 0b001
operand_a = self.ram_read(self.pc+1)
operand_b = self.ram_read(self.pc+2)
is_alu_op = (IR >> 5) & 0b001 == 1
if is_alu_op:
self.alu(IR, operand_a, operand_b)
else:
self.branchtable[IR](operand_a, operand_b)
# check if command sets PC directly
sets_pc = (IR >> 4) & 0b0001 == 1
if not sets_pc:
self.pc += 1 + num_args

def hlt(self, operand_a, operand_b):
self.running = False


def ldi(self, operand_a, operand_b):
self.reg[operand_a] = operand_b


def prn(self, operand_a, operand_b):
print(self.reg[operand_a])

def jmp(self, operand_a, operand_b):
reg_idx = self.reg[operand_a]
self.pc = reg_idx


def jeq(self, operand_a, operand_b):

flags = self.reg[6]
equal_is_flagged = (flags << 7) & 0b10000000 == 128
if equal_is_flagged:
# jump to address stored in reg
given_reg_value = self.reg[operand_a]
self.pc = given_reg_value
else:
self.pc += 2


def jne(self, operand_a, operand_b):

flags = self.reg[6]
equal_is_flagged = flags == 1
if equal_is_flagged:
self.pc += 2
else:
# jump to address stored in reg
given_reg_value = self.reg[operand_a]
self.pc = given_reg_value


def push(self, operand_a, operand_b):
self.reg[7] -= 1
# copy the value in the given register to the address pointed to by SP
value = self.reg[operand_a]
# copy to the address at stack pointer
SP = self.reg[7]
self.ram[SP] = value


def pop(self, operand_a, operand_b):
SP = self.reg[7]
value = self.ram[SP]
# Copy the value from the address pointed to by SP to the given register.
self.reg[operand_a] = value
self.reg[7] += 1


def call(self, operand_a, operand_b):
# PUSH
return_address = self.pc + 2

self.reg[7] -= 1

SP = self.reg[7]
self.ram[SP] = return_address
reg_idx = self.ram[self.pc+1]
subroutine_address = self.reg[reg_idx]

self.pc = subroutine_address


def ret(self, operand_a, operand_b):
# Return from subroutine.
# Pop value from top of stack
SP = self.reg[7]
return_address = self.ram[SP]
# store it in pc
self.pc = return_address
self.reg[7] += 1