Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Rename Hybrid Elements #1830

Merged
merged 8 commits into from
Sep 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 9 additions & 9 deletions doc/Hybrid.lyx
Original file line number Diff line number Diff line change
Expand Up @@ -191,17 +191,17 @@ E_{gc}(x,y)=\frac{1}{2}\|Rx+Sy-d\|_{\Sigma}^{2}.\label{eq:gc_error}
\end_layout

\begin_layout Subsubsection*
GaussianMixture
HybridGaussianConditional
\end_layout

\begin_layout Standard
A
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
(maybe to be renamed to
\emph on
GaussianMixtureComponent
HybridGaussianConditionalComponent
\emph default
) just indexes into a number of
\emph on
Expand Down Expand Up @@ -233,7 +233,7 @@ GaussianConditional
to a set of discrete variables.
As
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
is a
\emph on
Expand Down Expand Up @@ -324,7 +324,7 @@ The key point here is that
\color inherit
is the log-normalization constant for the complete
\emph on
GaussianMixture
HybridGaussianConditional
\emph default
across all values of
\begin_inset Formula $m$
Expand Down Expand Up @@ -548,15 +548,15 @@ with
\end_layout

\begin_layout Subsubsection*
GaussianMixtureFactor
HybridGaussianFactor
\end_layout

\begin_layout Standard
Analogously, a
\emph on
GaussianMixtureFactor
HybridGaussianFactor
\emph default
typically results from a GaussianMixture by having known values
typically results from a HybridGaussianConditional by having known values
\begin_inset Formula $\bar{x}$
\end_inset

Expand Down Expand Up @@ -817,7 +817,7 @@ E_{mf}(y,m)=\frac{1}{2}\|A_{m}y-b_{m}\|_{\Sigma_{mfm}}^{2}=E_{gcm}(\bar{x},y)+K_

\end_inset

which is identical to the GaussianMixture error
which is identical to the HybridGaussianConditional error
\begin_inset CommandInset ref
LatexCommand eqref
reference "eq:gm_error"
Expand Down
14 changes: 8 additions & 6 deletions gtsam/hybrid/HybridBayesNet.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -168,11 +168,11 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
DecisionTreeFactor prunedDiscreteProbs =
this->pruneDiscreteConditionals(maxNrLeaves);

/* To prune, we visitWith every leaf in the GaussianMixture.
/* To prune, we visitWith every leaf in the HybridGaussianConditional.
* For each leaf, using the assignment we can check the discrete decision tree
* for 0.0 probability, then just set the leaf to a nullptr.
*
* We can later check the GaussianMixture for just nullptrs.
* We can later check the HybridGaussianConditional for just nullptrs.
*/

HybridBayesNet prunedBayesNetFragment;
Expand All @@ -182,14 +182,16 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves) {
for (auto &&conditional : *this) {
if (auto gm = conditional->asMixture()) {
// Make a copy of the Gaussian mixture and prune it!
auto prunedGaussianMixture = std::make_shared<GaussianMixture>(*gm);
prunedGaussianMixture->prune(prunedDiscreteProbs); // imperative :-(
auto prunedHybridGaussianConditional =
std::make_shared<HybridGaussianConditional>(*gm);
prunedHybridGaussianConditional->prune(
prunedDiscreteProbs); // imperative :-(

// Type-erase and add to the pruned Bayes Net fragment.
prunedBayesNetFragment.push_back(prunedGaussianMixture);
prunedBayesNetFragment.push_back(prunedHybridGaussianConditional);

} else {
// Add the non-GaussianMixture conditional
// Add the non-HybridGaussianConditional conditional
prunedBayesNetFragment.push_back(conditional);
}
}
Expand Down
4 changes: 2 additions & 2 deletions gtsam/hybrid/HybridBayesNet.h
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
*
* Example:
* auto shared_ptr_to_a_conditional =
* std::make_shared<GaussianMixture>(...);
* std::make_shared<HybridGaussianConditional>(...);
* hbn.push_back(shared_ptr_to_a_conditional);
*/
void push_back(HybridConditional &&conditional) {
Expand All @@ -106,7 +106,7 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
* Preferred: Emplace a conditional directly using arguments.
*
* Examples:
* hbn.emplace_shared<GaussianMixture>(...)));
* hbn.emplace_shared<HybridGaussianConditional>(...)));
* hbn.emplace_shared<GaussianConditional>(...)));
* hbn.emplace_shared<DiscreteConditional>(...)));
*/
Expand Down
6 changes: 3 additions & 3 deletions gtsam/hybrid/HybridConditional.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ HybridConditional::HybridConditional(

/* ************************************************************************ */
HybridConditional::HybridConditional(
const std::shared_ptr<GaussianMixture> &gaussianMixture)
const std::shared_ptr<HybridGaussianConditional> &gaussianMixture)
: BaseFactor(KeyVector(gaussianMixture->keys().begin(),
gaussianMixture->keys().begin() +
gaussianMixture->nrContinuous()),
Expand Down Expand Up @@ -157,10 +157,10 @@ double HybridConditional::logNormalizationConstant() const {
return gc->logNormalizationConstant();
}
if (auto gm = asMixture()) {
return gm->logNormalizationConstant(); // 0.0!
return gm->logNormalizationConstant(); // 0.0!
}
if (auto dc = asDiscrete()) {
return dc->logNormalizationConstant(); // 0.0!
return dc->logNormalizationConstant(); // 0.0!
}
throw std::runtime_error(
"HybridConditional::logProbability: conditional type not handled");
Expand Down
21 changes: 12 additions & 9 deletions gtsam/hybrid/HybridConditional.h
Original file line number Diff line number Diff line change
Expand Up @@ -18,8 +18,8 @@
#pragma once

#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/hybrid/GaussianMixture.h>
#include <gtsam/hybrid/HybridFactor.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/inference/Conditional.h>
#include <gtsam/inference/Key.h>
Expand All @@ -39,7 +39,7 @@ namespace gtsam {
* As a type-erased variant of:
* - DiscreteConditional
* - GaussianConditional
* - GaussianMixture
* - HybridGaussianConditional
*
* The reason why this is important is that `Conditional<T>` is a CRTP class.
* CRTP is static polymorphism such that all CRTP classes, while bearing the
Expand Down Expand Up @@ -127,7 +127,8 @@ class GTSAM_EXPORT HybridConditional
* @param gaussianMixture Gaussian Mixture Conditional used to create the
* HybridConditional.
*/
HybridConditional(const std::shared_ptr<GaussianMixture>& gaussianMixture);
HybridConditional(
const std::shared_ptr<HybridGaussianConditional>& gaussianMixture);

/// @}
/// @name Testable
Expand All @@ -146,12 +147,12 @@ class GTSAM_EXPORT HybridConditional
/// @{

/**
* @brief Return HybridConditional as a GaussianMixture
* @brief Return HybridConditional as a HybridGaussianConditional
* @return nullptr if not a mixture
* @return GaussianMixture::shared_ptr otherwise
* @return HybridGaussianConditional::shared_ptr otherwise
*/
GaussianMixture::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<GaussianMixture>(inner_);
HybridGaussianConditional::shared_ptr asMixture() const {
return std::dynamic_pointer_cast<HybridGaussianConditional>(inner_);
}

/**
Expand Down Expand Up @@ -222,8 +223,10 @@ class GTSAM_EXPORT HybridConditional
boost::serialization::void_cast_register<GaussianConditional, Factor>(
static_cast<GaussianConditional*>(NULL), static_cast<Factor*>(NULL));
} else {
boost::serialization::void_cast_register<GaussianMixture, Factor>(
static_cast<GaussianMixture*>(NULL), static_cast<Factor*>(NULL));
boost::serialization::void_cast_register<HybridGaussianConditional,
Factor>(
static_cast<HybridGaussianConditional*>(NULL),
static_cast<Factor*>(NULL));
}
}
#endif
Expand Down
4 changes: 2 additions & 2 deletions gtsam/hybrid/HybridEliminationTree.h
Original file line number Diff line number Diff line change
Expand Up @@ -35,8 +35,8 @@ class GTSAM_EXPORT HybridEliminationTree

public:
typedef EliminationTree<HybridBayesNet, HybridGaussianFactorGraph>
Base; ///< Base class
typedef HybridEliminationTree This; ///< This class
Base; ///< Base class
typedef HybridEliminationTree This; ///< This class
typedef std::shared_ptr<This> shared_ptr; ///< Shared pointer to this class

/// @name Constructors
Expand Down
6 changes: 3 additions & 3 deletions gtsam/hybrid/HybridFactor.h
Original file line number Diff line number Diff line change
Expand Up @@ -45,9 +45,9 @@ DiscreteKeys CollectDiscreteKeys(const DiscreteKeys &key1,
* Base class for *truly* hybrid probabilistic factors
*
* Examples:
* - MixtureFactor
* - GaussianMixtureFactor
* - GaussianMixture
* - HybridNonlinearFactor
* - HybridGaussianFactor
* - HybridGaussianConditional
*
* @ingroup hybrid
*/
Expand Down
Loading
Loading