Racer is a simple Python task runner framework that supports sequential and parallel task execution. It also allows the result of one task to be passed to the next, making it flexible for various workflows.
- Task Execution: Run tasks sequentially or in parallel.
- Task Result Propagation: Optionally pass the result of a task to the next task in the queue.
- Multithreading Support: Execute tasks in parallel using multiple threads.
- Customizable Tasks: Easily define custom tasks by extending the
BaseTask
class.
Define your tasks using either the Task
or ParallelTask
class, then use the Racer
class to run them sequentially.
from racer import Task, ParallelTask, Racer
def add(x: int, y: int):
return x + y
def mul(x: int, y: int):
return x * y
task1 = Task(name="task1", target=add, kwargs={"x": 1, "y": 5})
task2 = Task(name="task2", target=mul, args=(3, 4))
racer = Racer([task1, task2])
result = racer.run(1)
print(result)
Output:
{0: {'task1': 6, 'task2': 12}}
To run a task in parallel, use the ParallelTask class. You can specify the number of workers (threads) to run the task concurrently.
from racer import ParallelTask
def add(x: int, y: int):
return x + y
def mul(x: int, y: int):
return x * y
task1 = Task(name="task1", target=add, kwargs={"x": 1, "y": 5})
task2 = Task(name="task2", target=mul, args=(3, 4))
parallel_task = ParallelTask(name="task3", tasks=[task1, task2])
racer = Racer([parallel_task])
result = racer.run(1)
print(result)
Output:
{0: {'task3': [6, 12]}}
To run a task multiple times, use the CloneTask class. You can specify the number of clones to run.
from racer import CloneTask
def add(x: int, y: int):
return x + y
clone_task = CloneTask(name="task1", target=add, kwargs={"x": 1, "y": 5})
racer = Racer([clone_task])
result = racer.run(3)
print(result)
Output:
{0: {'task1': [6, 6, 6]}}
To pass the result of one task to the next, set the use_prev_result flag to True when defining the task. The framework will automatically pass the previous task’s result as an argument to the next task.
def sub(x: int, y: int, prev_result=None):
return prev_result - x - y
task1 = Task(name="task1", target=add, kwargs={"x": 1, "y": 5})
task2 = Task(name="task2", target=sub, args=(3, 4), use_prev_result=True)
racer = Racer([task1, task2])
result = racer.run(1)
print(result)
In this example, the result of task1 is passed as an additional argument to task2.
Output:
{0: {'task1': 6, 'task2': -1}}
You can run the same set of tasks multiple times by passing the number of clones to the run method.
racer = Racer([task1, task2])
result = racer.run(3)
print(result)
Output:
{0: {'task1': 6, 'task2': -1}, 1: {'task1': 6, 'task2': -1}, 2: {'task1': 6, 'task2': -1}}
from racer import ParallelTask, Racer, Task
def add(x: int, y: int):
return x + y
def sub(x: int, y: int, z: int):
return x - y - z
def mul(x: int, y: int, z: int):
return x * y * z
if __name__ == "__main__":
task1 = Task(name="task1", target=add, kwargs={"x": 1, "y": 5})
task2 = Task(name="task2", target=sub, args=(3, 4), use_prev_result=True)
task3 = ParallelTask(
name="task3", target=mul, num_workers=3, args=(5, 6), use_prev_result=True
)
# tasks will be run sequentially
racer = Racer([task1, task2, task3])
results = racer.run(1)
print(results)
Output:
{0: {'task1': 6, 'task2': -7, 'task3': [30, 30, 30]}}