Skip to content

braveapple/AFJTCNN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Implementation for Age-related Factor guided Joint Task Modeling Convolutional Neural Network on Tensorflow

This is a TensorFlow implementation of the face recognizer described in the paper "Age-related Factor guided Joint Task Modeling Convolutional Neural Network for Cross-Age Face Recognition". Training data: The CACD dataset ([http://bcsiriuschen.github.io/CARC/]), MORPF Album 2 dataset([http://www.faceaginggroup.com/morph/]) and the CASIA-WebFace dataset ([http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html]) have been used for training.

Requirements

1.Tensorflow r1.2.

2.Multi-task CNN. A Matlab/Caffe implementation can be found here

Model

./src/pre_model.py: the model with just identity softmax and center loss.

./src/afjt_model.py: the multiloss model for AFJTCNNs.

Training

./src/pretrain.py : Pretraining CNN with identity label.

./src/finetune_afjt.py: finetune in a AFJTCNN way.

./src/finetune_multiloss.py: finetune the multiloss CNN without joint task factor analysis.

./src/test.py: test the EER of different checkpoints.

License

This code is distributed under MIT LICENSE

About

Tf Code for AFJTCNN paper

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published