-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
CDRP chemical and phenotypic space notebook - SF4
- Loading branch information
1 parent
17662e9
commit ce6a220
Showing
1 changed file
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import pandas as pd\n", | ||
"import seaborn as sb\n", | ||
"import umap" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"main = pd.read_csv('data/treatment_level_aux_combined.csv.gz')\n", | ||
"columns = [str(i) for i in range(672)]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fingerprints = np.load('data/fingerprints_cdrp.npz')['features']\n", | ||
"cdrp_smiles_scaffolds = pd.read_csv('data/cdrp_smiles_scaffolds.csv')\n", | ||
"Y = pd.read_csv(\"data/CDRP_MOA_MATCHES_official.csv\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#get new UMAP embeddings\n", | ||
"reducer = umap.UMAP()\n", | ||
"embeddings = reducer.fit_transform(fingerprints)\n", | ||
"print(fingerprints.shape, embeddings.shape)\n", | ||
"aux = pd.concat((pd.DataFrame(embeddings, columns=[\"UMAP 1\", \"UMAP 2\"]), cdrp_smiles_scaffolds.reset_index()), axis=1)\n", | ||
"#aux\n", | ||
"aux = pd.merge(aux, Y, left_on = 'Metadata_BROAD_ID', right_on = 'Var1', how = 'left')\n", | ||
"\n", | ||
"#to read aux used in publication uncomment next line\n", | ||
"#aux = pd.read_csv('data/chemical_aux_umap.csv')\n", | ||
"\n", | ||
"#UMAP embeddings that were used for the supplementary figure are already in this repository\n", | ||
"#aux.to_csv('data/chemical_aux_umap.csv', index = False)\n", | ||
"\n", | ||
"sb.scatterplot(data=aux, x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"lightpink\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"moas = []\n", | ||
"for k,r in Y.iterrows():\n", | ||
" for i in r[\"Metadata_moa.x\"].split(\"|\"):\n", | ||
" moas.append(i)\n", | ||
"\n", | ||
"moas = pd.DataFrame({'MoA': moas })" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig = plt.figure(figsize=(10,10))\n", | ||
"a = \"lipoxygenase inhibitor\"\n", | ||
"g = sb.scatterplot(data=aux[~aux['Metadata_moa.x'].str.contains(a)], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"dodgerblue\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"h = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(a)], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"limegreen\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", | ||
"x_lims = (None, None)\n", | ||
"y_lims = (None, None)\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"selected_moas = ['adenosine receptor agonist', 'adrenergic receptor antagonist', 'dopamine receptor agonist', 'egfr inhibitor', \n", | ||
" 'estrogen receptor agonist', 'glucocorticoid receptor agonist', \"tyrosine kinase inhibitor\",\n", | ||
" 'opioid receptor antagonist', \"bacterial dna gyrase inhibitor\", \"hmgcr inhibitor\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig = plt.figure(figsize=(10,10))\n", | ||
"h = sb.scatterplot(data=aux[~aux['Metadata_moa.x'].str.contains('|'.join(selected_moas))], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"dodgerblue\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"u = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[0])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"mediumorchid\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"v = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[1])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"indigo\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"w = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[2])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"teal\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"x = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[3])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"limegreen\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"y = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[4])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"gold\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"z = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[5])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"blue\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"k = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[6])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"salmon\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"l = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[7])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"rosybrown\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"m = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[8])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"hotpink\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"n = sb.scatterplot(data=aux[aux['Metadata_moa.x'].str.contains(selected_moas[9])], x=\"UMAP 1\", y=\"UMAP 2\", s=100, color=\"crimson\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"\n", | ||
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", | ||
"x_lims = (None, None)\n", | ||
"y_lims = (None, None)\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig.savefig(\"chemical_space_moa.png\") \n", | ||
"fig.savefig(\"chemical_space_moa.svg\") " | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig = plt.figure(figsize=(10,10))\n", | ||
"h = sb.scatterplot(data=main[~main['Metadata_moa.x'].str.contains('|'.join(selected_moas))], x=\"X\", y=\"Y\", s=100, color=\"dodgerblue\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"u = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[0])], x=\"X\", y=\"Y\", s=100, color=\"mediumorchid\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"v = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[1])], x=\"X\", y=\"Y\", s=100, color=\"indigo\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"w = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[2])], x=\"X\", y=\"Y\", s=100, color=\"teal\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"x = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[3])], x=\"X\", y=\"Y\", s=100, color=\"limegreen\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"y = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[4])], x=\"X\", y=\"Y\", s=100, color=\"gold\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"z = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[5])], x=\"X\", y=\"Y\", s=100, color=\"blue\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"k = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[6])], x=\"X\", y=\"Y\", s=100, color=\"salmon\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"l = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[7])], x=\"X\", y=\"Y\", s=100, color=\"rosybrown\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"m = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[8])], x=\"X\", y=\"Y\", s=100, color=\"hotpink\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"n = sb.scatterplot(data=main[main['Metadata_moa.x'].str.contains(selected_moas[9])], x=\"X\", y=\"Y\", s=100, color=\"crimson\", linewidth=0.5, edgecolor=\"black\", alpha=0.8)\n", | ||
"\n", | ||
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n", | ||
"x_lims = (None, None)\n", | ||
"y_lims = (None, None)\n", | ||
"plt.show()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"fig.savefig(\"phenotypic_space_moa.png\") \n", | ||
"fig.savefig(\"phenotypic_space_moa.svg\") " | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.13" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |