Skip to content

canstralian/CyberAttackDetection-Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

43 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CyberAttackDetection-Python

🔧 Build Status
📊 Coverage
📦 Dependencies
📜 License
🕒 Last Commit
🚀 Release
🐞 Issues

Overview

CyberAttackDetection-Python is a project aimed at detecting cyber attacks using machine learning models. This repository contains code for data preprocessing, model training, evaluation, and utilities.

Directory Structure

CyberAttackDetection-Python/
├── .github/
│   └── workflows/
│       └── ci.yml
├── models/
│   └── random_forest_model.pkl
│   └── simple_nn_model.pth
├── data/
│   └── raw_data.csv
│   └── processed_data.csv
├── notebooks/
│   └── exploratory_data_analysis.ipynb
│   └── model_training.ipynb
├── src/
│   ├── __init__.py
│   ├── data_preprocessing.py
│   ├── model_training.py
│   ├── model_evaluation.py
│   └── utilities.py
├── tests/
│   └── test_data_preprocessing.py
│   └── test_model_training.py
│   └── test_model_evaluation.py
├── .gitignore
├── .replit
├── README.md
├── main.py
├── poetry.lock
├── pyproject.toml
└── requirements.txt

Getting Started

To get started with this project, follow these steps:

  1. Clone the repository:
    git clone https://github.com/canstralian/CyberAttackDetection-Python.git
  2. Install the dependencies:
    pip install -r requirements.txt

Usage

Data Preprocessing

Run the data preprocessing script:

python src/data_preprocessing.py

Model Training

Train the models:

python src/model_training.py

Model Evaluation

Evaluate the models:

python src/model_evaluation.py

Contributing

Contributions are welcome! Please read the contributing guidelines for more information.

License

This project is licensed under the MIT License. See the LICENSE file for details.

Acknowledgments

About

Resources

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

  •  

Packages

No packages published

Contributors 2

  •  
  •  

Languages