|
162 | 162 | "id": "a2932f76-a8c7-4009-bff1-f672da79923a",
|
163 | 163 | "metadata": {},
|
164 | 164 | "source": [
|
165 |
| - "## Save the pred_probs and features used for OOD scoring" |
| 165 | + "## Save the pred_probs used for OOD scoring" |
166 | 166 | ]
|
167 | 167 | },
|
168 | 168 | {
|
|
214 | 214 | " in_test_pred_probs = in_predictor_loaded.predict_proba(data=in_test_dataset, as_pandas=False)\n",
|
215 | 215 | " out_test_pred_probs = in_predictor_loaded.predict_proba(data=out_test_dataset, as_pandas=False)\n",
|
216 | 216 | " \n",
|
217 |
| - " # Get LEARNED embeddings\n", |
218 |
| - " print(\" Extracting learned embeddings...\")\n", |
219 |
| - " in_train_features = \\\n", |
220 |
| - " np.stack(\n", |
221 |
| - " in_predictor_loaded.predict_feature(data=in_train_dataset, as_pandas=False)[:, 0]\n", |
222 |
| - " )\n", |
223 |
| - " in_test_features = \\\n", |
224 |
| - " np.stack(\n", |
225 |
| - " in_predictor_loaded.predict_feature(data=in_test_dataset, as_pandas=False)[:, 0]\n", |
226 |
| - " )\n", |
227 |
| - " out_test_features = \\\n", |
228 |
| - " np.stack(\n", |
229 |
| - " in_predictor_loaded.predict_feature(data=out_test_dataset, as_pandas=False)[:, 0]\n", |
230 |
| - " ) \n", |
231 |
| - " \n", |
232 | 217 | " # Save files here\n",
|
233 | 218 | " out_folder = f\"./model_{model}_experiment_in_{in_dataset}_out_{out_dataset}/\"\n",
|
234 | 219 | " \n",
|
|
241 | 226 | " np.save(out_folder + \"in_test_pred_probs.npy\", in_test_pred_probs)\n",
|
242 | 227 | " np.save(out_folder + \"out_test_pred_probs.npy\", out_test_pred_probs)\n",
|
243 | 228 | " \n",
|
244 |
| - " np.save(out_folder + \"in_train_features.npy\", in_train_features)\n", |
245 |
| - " np.save(out_folder + \"in_test_features.npy\", in_test_features)\n", |
246 |
| - " np.save(out_folder + \"out_test_features.npy\", out_test_features)\n", |
247 |
| - " \n", |
248 | 229 | " np.save(out_folder + \"in_train_dataset_class_labels.npy\", in_train_dataset_class_labels)\n",
|
249 | 230 | " np.save(out_folder + \"in_test_dataset_class_labels.npy\", in_test_dataset_class_labels)"
|
250 | 231 | ]
|
|
254 | 235 | "id": "47837b90-a36f-4c50-a966-33f09b2bb31a",
|
255 | 236 | "metadata": {},
|
256 | 237 | "source": [
|
257 |
| - "## Run OOD scoring on loaded pred_probs and features" |
| 238 | + "## Run OOD scoring on loaded pred_probs" |
258 | 239 | ]
|
259 | 240 | },
|
260 | 241 | {
|
|
309 | 290 | " in_test_pred_probs = np.load(out_folder + \"in_test_pred_probs.npy\")\n",
|
310 | 291 | " out_test_pred_probs = np.load(out_folder + \"out_test_pred_probs.npy\")\n",
|
311 | 292 | " \n",
|
312 |
| - " in_train_features = np.load(out_folder + \"in_train_features.npy\")\n", |
313 |
| - " in_test_features = np.load(out_folder + \"in_test_features.npy\", )\n", |
314 |
| - " out_test_features = np.load(out_folder + \"out_test_features.npy\")\n", |
315 |
| - " \n", |
316 | 293 | " in_train_dataset_class_labels = np.load(out_folder + \"in_train_dataset_class_labels.npy\")\n",
|
317 | 294 | " in_test_dataset_class_labels = np.load(out_folder + \"in_test_dataset_class_labels.npy\")\n",
|
318 |
| - "\n", |
319 |
| - " # Combine pred_probs and features for TEST dataset\n", |
320 |
| - " test_pred_probs = np.vstack([in_test_pred_probs, out_test_pred_probs])\n", |
321 |
| - " test_features = np.vstack([in_test_features, out_test_features]) # LEARNED embeddings\n", |
322 | 295 | " \n",
|
323 | 296 | " # Create OOD binary labels (1 = out-of-distribution)\n",
|
324 | 297 | " in_labels = np.zeros(shape=len(in_test_pred_probs))\n",
|
|
0 commit comments