Skip to content

Commit ad52f62

Browse files
committed
Removed unnessesary features calculation
1 parent f0ff22a commit ad52f62

File tree

1 file changed

+2
-29
lines changed

1 file changed

+2
-29
lines changed

src/experiments/adjusted-OOD-scores/1_Evaluate_All_OOD_Experiments.ipynb

+2-29
Original file line numberDiff line numberDiff line change
@@ -162,7 +162,7 @@
162162
"id": "a2932f76-a8c7-4009-bff1-f672da79923a",
163163
"metadata": {},
164164
"source": [
165-
"## Save the pred_probs and features used for OOD scoring"
165+
"## Save the pred_probs used for OOD scoring"
166166
]
167167
},
168168
{
@@ -214,21 +214,6 @@
214214
" in_test_pred_probs = in_predictor_loaded.predict_proba(data=in_test_dataset, as_pandas=False)\n",
215215
" out_test_pred_probs = in_predictor_loaded.predict_proba(data=out_test_dataset, as_pandas=False)\n",
216216
" \n",
217-
" # Get LEARNED embeddings\n",
218-
" print(\" Extracting learned embeddings...\")\n",
219-
" in_train_features = \\\n",
220-
" np.stack(\n",
221-
" in_predictor_loaded.predict_feature(data=in_train_dataset, as_pandas=False)[:, 0]\n",
222-
" )\n",
223-
" in_test_features = \\\n",
224-
" np.stack(\n",
225-
" in_predictor_loaded.predict_feature(data=in_test_dataset, as_pandas=False)[:, 0]\n",
226-
" )\n",
227-
" out_test_features = \\\n",
228-
" np.stack(\n",
229-
" in_predictor_loaded.predict_feature(data=out_test_dataset, as_pandas=False)[:, 0]\n",
230-
" ) \n",
231-
" \n",
232217
" # Save files here\n",
233218
" out_folder = f\"./model_{model}_experiment_in_{in_dataset}_out_{out_dataset}/\"\n",
234219
" \n",
@@ -241,10 +226,6 @@
241226
" np.save(out_folder + \"in_test_pred_probs.npy\", in_test_pred_probs)\n",
242227
" np.save(out_folder + \"out_test_pred_probs.npy\", out_test_pred_probs)\n",
243228
" \n",
244-
" np.save(out_folder + \"in_train_features.npy\", in_train_features)\n",
245-
" np.save(out_folder + \"in_test_features.npy\", in_test_features)\n",
246-
" np.save(out_folder + \"out_test_features.npy\", out_test_features)\n",
247-
" \n",
248229
" np.save(out_folder + \"in_train_dataset_class_labels.npy\", in_train_dataset_class_labels)\n",
249230
" np.save(out_folder + \"in_test_dataset_class_labels.npy\", in_test_dataset_class_labels)"
250231
]
@@ -254,7 +235,7 @@
254235
"id": "47837b90-a36f-4c50-a966-33f09b2bb31a",
255236
"metadata": {},
256237
"source": [
257-
"## Run OOD scoring on loaded pred_probs and features"
238+
"## Run OOD scoring on loaded pred_probs"
258239
]
259240
},
260241
{
@@ -309,16 +290,8 @@
309290
" in_test_pred_probs = np.load(out_folder + \"in_test_pred_probs.npy\")\n",
310291
" out_test_pred_probs = np.load(out_folder + \"out_test_pred_probs.npy\")\n",
311292
" \n",
312-
" in_train_features = np.load(out_folder + \"in_train_features.npy\")\n",
313-
" in_test_features = np.load(out_folder + \"in_test_features.npy\", )\n",
314-
" out_test_features = np.load(out_folder + \"out_test_features.npy\")\n",
315-
" \n",
316293
" in_train_dataset_class_labels = np.load(out_folder + \"in_train_dataset_class_labels.npy\")\n",
317294
" in_test_dataset_class_labels = np.load(out_folder + \"in_test_dataset_class_labels.npy\")\n",
318-
"\n",
319-
" # Combine pred_probs and features for TEST dataset\n",
320-
" test_pred_probs = np.vstack([in_test_pred_probs, out_test_pred_probs])\n",
321-
" test_features = np.vstack([in_test_features, out_test_features]) # LEARNED embeddings\n",
322295
" \n",
323296
" # Create OOD binary labels (1 = out-of-distribution)\n",
324297
" in_labels = np.zeros(shape=len(in_test_pred_probs))\n",

0 commit comments

Comments
 (0)