-
-
Notifications
You must be signed in to change notification settings - Fork 158
Adds Leetcode 308 solution 🧩 and addresses changes requested #4264
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 1 commit
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
333 changes: 333 additions & 0 deletions
333
dsa-solutions/lc-solutions/0300-0399/0308-range-sum-query-2d-mutable.md
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
--- | ||
id: range-sum-query-2d-mutable | ||
title: Range Sum Query 2D - Mutable | ||
sidebar_label: 0308-Range-Sum-Query-2D-Mutable | ||
tags: [Segment Tree, 2D Matrix, Hard] | ||
description: Given a 2D matrix, handle multiple queries of the following types - updating the value of a cell and calculating the sum of elements inside a rectangle defined by its upper left and lower right corners. | ||
|
||
--- | ||
|
||
|
||
## Problem Statement | ||
|
||
Given a 2D matrix `matrix`, handle multiple queries of the following types: | ||
|
||
1. **Update** the value of a cell in `matrix`. | ||
2. **Calculate** the sum of the elements inside a rectangle defined by its upper left corner `(row1, col1)` and lower right corner `(row2, col2)`. | ||
|
||
Implement the `NumMatrix` class: | ||
|
||
- **NumMatrix(int[][] matrix)**: Initializes the object with the integer matrix `matrix`. | ||
- **void update(int row, int col, int val)**: Updates the value of `matrix[row][col]` to be `val`. | ||
- **int sumRegion(int row1, int col1, int row2, int col2)**: Returns the sum of the elements of `matrix` inside the rectangle defined by its upper left corner `(row1, col1)` and lower right corner `(row2, col2)`. | ||
|
||
### Examples | ||
|
||
**Example 1:** | ||
|
||
```plaintext | ||
Input: | ||
["NumMatrix", "sumRegion", "update", "sumRegion"] | ||
[[[[3, 0, 1, 4, 2], [5, 6, 3, 2, 1], [1, 2, 0, 1, 5], [4, 1, 0, 1, 7], [1, 0, 3, 0, 5]]], [2, 1, 4, 3], [3, 2, 2], [2, 1, 4, 3]] | ||
Output: | ||
[null, 8, null, 10] | ||
``` | ||
|
||
**Example 2:** | ||
|
||
```plaintext | ||
Input: m = 1, n = 1, positions = [[0,0]] | ||
Output: [1] | ||
``` | ||
|
||
### Constraints | ||
- m == matrix.length | ||
- n == matrix[i].length | ||
- 1 <= m, n <= 200 | ||
- -1000 <= matrix[i][j] <= 1000 | ||
- 0 <= row < m | ||
- 0 <= col < n | ||
- -1000 <= val <= 1000 | ||
- 0 <= row1 <= row2 < m | ||
- 0 <= col1 <= col2 < n | ||
- At most 5000 calls will be made to sumRegion and update. | ||
|
||
### Follow up | ||
Implement a solution with Binary Indexed Tree or Segment Tree. | ||
|
||
## Solution | ||
|
||
### Approach | ||
|
||
We use Binary Indexed Tree (BIT) to handle the update and sum queries efficiently. | ||
|
||
#### Algorithm | ||
- Binary Indexed Tree: Maintain a BIT to manage and update the sums of elements efficiently. | ||
- Update Operation: Update the value in the BIT when a cell value changes. | ||
- Query Operation: Calculate the sum for a given rectangle using the BIT. | ||
|
||
#### Python | ||
|
||
```py | ||
# segment tree | ||
class Node: | ||
def __init__(self): | ||
self.l = 0 | ||
self.r = 0 | ||
self.v = 0 | ||
|
||
class SegmentTree: | ||
def __init__(self, nums): | ||
n = len(nums) | ||
self.nums = nums | ||
self.tr = [Node() for _ in range(4 * n)] | ||
self.build(1, 1, n) | ||
|
||
def build(self, u, l, r): | ||
self.tr[u].l = l | ||
self.tr[u].r = r | ||
if l == r: | ||
self.tr[u].v = self.nums[l - 1] | ||
return | ||
mid = (l + r) >> 1 | ||
self.build(u << 1, l, mid) | ||
self.build(u << 1 | 1, mid + 1, r) | ||
self.pushup(u) | ||
|
||
def modify(self, u, x, v): | ||
if self.tr[u].l == x and self.tr[u].r == x: | ||
self.tr[u].v = v | ||
return | ||
mid = (self.tr[u].l + self.tr[u].r) >> 1 | ||
if x <= mid: | ||
self.modify(u << 1, x, v) | ||
else: | ||
self.modify(u << 1 | 1, x, v) | ||
self.pushup(u) | ||
|
||
def query(self, u, l, r): | ||
if self.tr[u].l >= l and self.tr[u].r <= r: | ||
return self.tr[u].v | ||
mid = (self.tr[u].l + self.tr[u].r) >> 1 | ||
v = 0 | ||
if l <= mid: | ||
v += self.query(u << 1, l, r) | ||
if r > mid: | ||
v += self.query(u << 1 | 1, l, r) | ||
return v | ||
|
||
def pushup(self, u): | ||
self.tr[u].v = self.tr[u << 1].v + self.tr[u << 1 | 1].v | ||
|
||
class NumMatrix: | ||
|
||
def __init__(self, matrix: List[List[int]]): | ||
self.trees = [SegmentTree(row) for row in matrix] | ||
|
||
def update(self, row: int, col: int, val: int) -> None: | ||
tree = self.trees[row] | ||
tree.modify(1, col + 1, val) | ||
|
||
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: | ||
return sum(self.trees[row].query(1, col1 + 1, col2 + 1) for row in range(row1, row2 + 1)) | ||
|
||
|
||
# Your NumMatrix object will be instantiated and called as such: | ||
# obj = NumMatrix(matrix) | ||
# obj.update(row,col,val) | ||
# param_2 = obj.sumRegion(row1,col1,row2,col2) | ||
|
||
############ | ||
''' | ||
It uses a binary indexed tree (BIT) or Fenwick tree to efficiently update and query sums of submatrices. | ||
The NumMatrix class constructor initializes the BIT and matrix data structure. | ||
The update method updates the matrix and BIT with the difference in values. | ||
The sumRegion method computes the sum of a submatrix using prefix sums computed with the BIT. | ||
The sum method computes a prefix sum in the BIT. | ||
|
||
|
||
"Fenwick tree" vs "Segment tree" | ||
https://stackoverflow.com/questions/64190332/fenwick-tree-vs-segment-tree | ||
|
||
''' | ||
|
||
class NumMatrix: | ||
def __init__(self, matrix: List[List[int]]): | ||
if not matrix or not matrix[0]: | ||
self.m, self.n = 0, 0 | ||
return | ||
|
||
self.m, self.n = len(matrix), len(matrix[0]) | ||
self.bit = [[0] * (self.n + 1) for _ in range(self.m + 1)] | ||
self.matrix = [[0] * self.n for _ in range(self.m)] | ||
|
||
for i in range(self.m): | ||
for j in range(self.n): | ||
self.update(i, j, matrix[i][j]) | ||
|
||
def update(self, row: int, col: int, val: int) -> None: | ||
diff = val - self.matrix[row][col] | ||
self.matrix[row][col] = val | ||
i = row + 1 | ||
while i <= self.m: | ||
j = col + 1 | ||
while j <= self.n: | ||
self.bit[i][j] += diff | ||
j += j & -j | ||
i += i & -i | ||
|
||
def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: | ||
return self.sum(row2 + 1, col2 + 1) - self.sum(row2 + 1, col1) - self.sum(row1, col2 + 1) + self.sum(row1, col1) | ||
|
||
def sum(self, row: int, col: int) -> int: | ||
res = 0 | ||
i = row | ||
while i > 0: | ||
j = col | ||
while j > 0: | ||
res += self.bit[i][j] | ||
j -= j & -j | ||
i -= i & -i | ||
return res | ||
|
||
``` | ||
|
||
#### Java | ||
|
||
```java | ||
class BinaryIndexedTree { | ||
private int n; | ||
private int[] c; | ||
|
||
public BinaryIndexedTree(int n) { | ||
this.n = n; | ||
c = new int[n + 1]; | ||
} | ||
|
||
public void update(int x, int delta) { | ||
while (x <= n) { | ||
c[x] += delta; | ||
x += lowbit(x); | ||
} | ||
} | ||
|
||
public int query(int x) { | ||
int s = 0; | ||
while (x > 0) { | ||
s += c[x]; | ||
x -= lowbit(x); | ||
} | ||
return s; | ||
} | ||
|
||
public static int lowbit(int x) { | ||
return x & -x; | ||
} | ||
} | ||
|
||
class NumMatrix { | ||
private BinaryIndexedTree[] trees; | ||
|
||
public NumMatrix(int[][] matrix) { | ||
int m = matrix.length; | ||
int n = matrix[0].length; | ||
trees = new BinaryIndexedTree[m]; | ||
for (int i = 0; i < m; ++i) { | ||
BinaryIndexedTree tree = new BinaryIndexedTree(n); | ||
for (int j = 0; j < n; ++j) { | ||
tree.update(j + 1, matrix[i][j]); | ||
} | ||
trees[i] = tree; | ||
} | ||
} | ||
|
||
public void update(int row, int col, int val) { | ||
BinaryIndexedTree tree = trees[row]; | ||
int prev = tree.query(col + 1) - tree.query(col); | ||
tree.update(col + 1, val - prev); | ||
} | ||
|
||
public int sumRegion(int row1, int col1, int row2, int col2) { | ||
int s = 0; | ||
for (int i = row1; i <= row2; ++i) { | ||
BinaryIndexedTree tree = trees[i]; | ||
s += tree.query(col2 + 1) - tree.query(col1); | ||
} | ||
return s; | ||
} | ||
} | ||
|
||
``` | ||
|
||
#### C++ | ||
|
||
```cpp | ||
class BinaryIndexedTree { | ||
public: | ||
int n; | ||
vector<int> c; | ||
|
||
BinaryIndexedTree(int _n) | ||
: n(_n) | ||
, c(_n + 1) {} | ||
|
||
void update(int x, int delta) { | ||
while (x <= n) { | ||
c[x] += delta; | ||
x += lowbit(x); | ||
} | ||
} | ||
|
||
int query(int x) { | ||
int s = 0; | ||
while (x > 0) { | ||
s += c[x]; | ||
x -= lowbit(x); | ||
} | ||
return s; | ||
} | ||
|
||
int lowbit(int x) { | ||
return x & -x; | ||
} | ||
}; | ||
|
||
class NumMatrix { | ||
public: | ||
vector<BinaryIndexedTree*> trees; | ||
|
||
NumMatrix(vector<vector<int>>& matrix) { | ||
int m = matrix.size(); | ||
int n = matrix[0].size(); | ||
trees.resize(m); | ||
for (int i = 0; i < m; ++i) { | ||
BinaryIndexedTree* tree = new BinaryIndexedTree(n); | ||
for (int j = 0; j < n; ++j) { | ||
tree->update(j + 1, matrix[i][j]); | ||
} | ||
trees[i] = tree; | ||
} | ||
} | ||
|
||
void update(int row, int col, int val) { | ||
BinaryIndexedTree* tree = trees[row]; | ||
int prev = tree->query(col + 1) - tree->query(col); | ||
tree->update(col + 1, val - prev); | ||
} | ||
|
||
int sumRegion(int row1, int col1, int row2, int col2) { | ||
int s = 0; | ||
for (int i = row1; i <= row2; ++i) { | ||
BinaryIndexedTree* tree = trees[i]; | ||
s += tree->query(col2 + 1) - tree->query(col1); | ||
} | ||
return s; | ||
} | ||
}; | ||
|
||
``` | ||
|
||
### Complexity Analysis | ||
|
||
- **Time Complexity**: $O(\log m \cdot \log n)$ for both update and sumRegion operations, where $m$ and $n$ are the dimensions of the matrix. | ||
- **Space Complexity**: $O(m \cdot n)$ for storing the BITs and matrix. |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
replace
<
with<