Skip to content

Commit 0ada948

Browse files
adamltysongitbook-bot
authored andcommitted
GitBook: [master] 49 pages modified
1 parent c833fb2 commit 0ada948

File tree

1 file changed

+8
-2
lines changed

1 file changed

+8
-2
lines changed

tutorial/tutorial.md

+8-2
Original file line numberDiff line numberDiff line change
@@ -80,11 +80,11 @@ cellfinder -s test_brain/ch00 -b test_brain/ch01 -o test_brain/output -x 2 -y 2
8080
If your machine has less than 32GB of RAM, you should use the `allen_mouse_25um` atlas either way, as registration with the high-resolution atlas requires about 30GB for this image.
8181
{% endhint %}
8282

83-
### Inspecting the results
83+
### Understanding the results
8484

8585

8686

87-
#### Visualising cell detection performance
87+
#### Visualising cell detection
8888

8989
cellfinder comes with a plugin for [napari](https://napari.org/) for easily visualising the results. To open napari, just run `napari` from your command line, and a viewer window should pop up.
9090

@@ -93,3 +93,9 @@ Into the window, then drag and drop:
9393
* The signal channel directory \(`test_brain/ch00`\)
9494
* The entire cellfinder output directory
9595

96+
#### Visualising image registration
97+
98+
cellfinder uses [brainreg](https://github.com/brainglobe/brainreg) for registration to the atlas. To check the results of this step, please see the [brainreg visualisation documentation](https://docs.brainglobe.info/brainreg/visualisation).
99+
100+
101+

0 commit comments

Comments
 (0)