Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

2023.12 support #157

Merged
merged 5 commits into from
Jul 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
64 changes: 62 additions & 2 deletions array_api_compat/common/_aliases.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@
from typing import NamedTuple
import inspect

from ._helpers import _check_device
from ._helpers import array_namespace, _check_device

# These functions are modified from the NumPy versions.

Expand Down Expand Up @@ -264,6 +264,66 @@ def var(
) -> ndarray:
return xp.var(x, axis=axis, ddof=correction, keepdims=keepdims, **kwargs)


# The min and max argument names in clip are different and not optional in numpy, and type
# promotion behavior is different.
def clip(
x: ndarray,
/,
min: Optional[Union[int, float, ndarray]] = None,
max: Optional[Union[int, float, ndarray]] = None,
*,
xp,
# TODO: np.clip has other ufunc kwargs
out: Optional[ndarray] = None,
) -> ndarray:
def _isscalar(a):
return isinstance(a, (int, float, type(None)))
min_shape = () if _isscalar(min) else min.shape
max_shape = () if _isscalar(max) else max.shape
result_shape = xp.broadcast_shapes(x.shape, min_shape, max_shape)

wrapped_xp = array_namespace(x)

# np.clip does type promotion but the array API clip requires that the
# output have the same dtype as x. We do this instead of just downcasting
# the result of xp.clip() to handle some corner cases better (e.g.,
# avoiding uint64 -> float64 promotion).

# Note: cases where min or max overflow (integer) or round (float) in the
# wrong direction when downcasting to x.dtype are unspecified. This code
# just does whatever NumPy does when it downcasts in the assignment, but
# other behavior could be preferred, especially for integers. For example,
# this code produces:

# >>> clip(asarray(0, dtype=int8), asarray(128, dtype=int16), None)
# -128

# but an answer of 0 might be preferred. See
# https://github.com/numpy/numpy/issues/24976 for more discussion on this issue.


# At least handle the case of Python integers correctly (see
# https://github.com/numpy/numpy/pull/26892).
if type(min) is int and min <= xp.iinfo(x.dtype).min:
min = None
if type(max) is int and max >= xp.iinfo(x.dtype).max:
max = None

if out is None:
out = wrapped_xp.asarray(xp.broadcast_to(x, result_shape), copy=True)
if min is not None:
a = xp.broadcast_to(xp.asarray(min), result_shape)
ia = (out < a) | xp.isnan(a)
# torch requires an explicit cast here
out[ia] = wrapped_xp.astype(a[ia], out.dtype)
if max is not None:
b = xp.broadcast_to(xp.asarray(max), result_shape)
ib = (out > b) | xp.isnan(b)
out[ib] = wrapped_xp.astype(b[ib], out.dtype)
# Return a scalar for 0-D
return out[()]

# Unlike transpose(), the axes argument to permute_dims() is required.
def permute_dims(x: ndarray, /, axes: Tuple[int, ...], xp) -> ndarray:
return xp.transpose(x, axes)
Expand Down Expand Up @@ -465,6 +525,6 @@ def isdtype(
'linspace', 'ones', 'ones_like', 'zeros', 'zeros_like',
'UniqueAllResult', 'UniqueCountsResult', 'UniqueInverseResult',
'unique_all', 'unique_counts', 'unique_inverse', 'unique_values',
'astype', 'std', 'var', 'permute_dims', 'reshape', 'argsort',
'astype', 'std', 'var', 'clip', 'permute_dims', 'reshape', 'argsort',
'sort', 'nonzero', 'sum', 'prod', 'ceil', 'floor', 'trunc',
'matmul', 'matrix_transpose', 'tensordot', 'vecdot', 'isdtype']
1 change: 1 addition & 0 deletions array_api_compat/cupy/_aliases.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
astype = _aliases.astype
std = get_xp(cp)(_aliases.std)
var = get_xp(cp)(_aliases.var)
clip = get_xp(cp)(_aliases.clip)
permute_dims = get_xp(cp)(_aliases.permute_dims)
reshape = get_xp(cp)(_aliases.reshape)
argsort = get_xp(cp)(_aliases.argsort)
Expand Down
1 change: 1 addition & 0 deletions array_api_compat/dask/array/_aliases.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,7 @@ def _dask_arange(
permute_dims = get_xp(da)(_aliases.permute_dims)
std = get_xp(da)(_aliases.std)
var = get_xp(da)(_aliases.var)
clip = get_xp(da)(_aliases.clip)
empty = get_xp(da)(_aliases.empty)
empty_like = get_xp(da)(_aliases.empty_like)
full = get_xp(da)(_aliases.full)
Expand Down
1 change: 1 addition & 0 deletions array_api_compat/numpy/_aliases.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
astype = _aliases.astype
std = get_xp(np)(_aliases.std)
var = get_xp(np)(_aliases.var)
clip = get_xp(np)(_aliases.clip)
permute_dims = get_xp(np)(_aliases.permute_dims)
reshape = get_xp(np)(_aliases.reshape)
argsort = get_xp(np)(_aliases.argsort)
Expand Down
15 changes: 9 additions & 6 deletions array_api_compat/torch/_aliases.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
from builtins import all as _builtin_all, any as _builtin_any

from ..common._aliases import (matrix_transpose as _aliases_matrix_transpose,
vecdot as _aliases_vecdot)
vecdot as _aliases_vecdot, clip as _aliases_clip)
from .._internal import get_xp

import torch
Expand Down Expand Up @@ -155,6 +155,7 @@ def can_cast(from_: Union[Dtype, array], to: Dtype, /) -> bool:
bitwise_or = _two_arg(torch.bitwise_or)
bitwise_right_shift = _two_arg(torch.bitwise_right_shift)
bitwise_xor = _two_arg(torch.bitwise_xor)
copysign = _two_arg(torch.copysign)
divide = _two_arg(torch.divide)
# Also a rename. torch.equal does not broadcast
equal = _two_arg(torch.eq)
Expand Down Expand Up @@ -188,6 +189,8 @@ def min(x: array, /, *, axis: Optional[Union[int, Tuple[int, ...]]] = None, keep
return torch.clone(x)
return torch.amin(x, axis, keepdims=keepdims)

clip = get_xp(torch)(_aliases_clip)

# torch.sort also returns a tuple
# https://github.com/pytorch/pytorch/issues/70921
def sort(x: array, /, *, axis: int = -1, descending: bool = False, stable: bool = True, **kwargs) -> array:
Expand Down Expand Up @@ -702,11 +705,11 @@ def take(x: array, indices: array, /, *, axis: Optional[int] = None, **kwargs) -

__all__ = ['result_type', 'can_cast', 'permute_dims', 'bitwise_invert',
'newaxis', 'add', 'atan2', 'bitwise_and', 'bitwise_left_shift',
'bitwise_or', 'bitwise_right_shift', 'bitwise_xor', 'divide',
'equal', 'floor_divide', 'greater', 'greater_equal', 'less',
'less_equal', 'logaddexp', 'multiply', 'not_equal', 'pow',
'remainder', 'subtract', 'max', 'min', 'sort', 'prod', 'sum',
'any', 'all', 'mean', 'std', 'var', 'concat', 'squeeze',
'bitwise_or', 'bitwise_right_shift', 'bitwise_xor', 'copysign',
'divide', 'equal', 'floor_divide', 'greater', 'greater_equal',
'less', 'less_equal', 'logaddexp', 'multiply', 'not_equal', 'pow',
'remainder', 'subtract', 'max', 'min', 'clip', 'sort', 'prod',
'sum', 'any', 'all', 'mean', 'std', 'var', 'concat', 'squeeze',
'broadcast_to', 'flip', 'roll', 'nonzero', 'where', 'reshape',
'arange', 'eye', 'linspace', 'full', 'ones', 'zeros', 'empty',
'tril', 'triu', 'expand_dims', 'astype', 'broadcast_arrays',
Expand Down
3 changes: 3 additions & 0 deletions dask-xfails.txt
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,9 @@ array_api_tests/test_special_cases.py::test_iop[__ipow__(x1_i is -0 and x2_i > 0
array_api_tests/test_special_cases.py::test_iop[__ipow__(x1_i is -infinity and x2_i > 0 and not (x2_i.is_integer() and x2_i % 2 == 1)) -> +infinity]
array_api_tests/test_special_cases.py::test_binary[__pow__(x1_i is -infinity and x2_i > 0 and not (x2_i.is_integer() and x2_i % 2 == 1)) -> +infinity]

# The clip helper uses boolean indexing
array_api_tests/test_operators_and_elementwise_functions.py::test_clip

# No sorting in dask
array_api_tests/test_has_names.py::test_has_names[sorting-argsort]
array_api_tests/test_has_names.py::test_has_names[sorting-sort]
Expand Down
Loading