-
Notifications
You must be signed in to change notification settings - Fork 10
WIP: ENH/TST: xp_assert_
enhancements
#267
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Changes from all commits
1140a1a
054fba0
d7f7549
a6d2d8c
cb3c2d6
7347366
c80dd5e
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
|
@@ -5,27 +5,37 @@ | |||||
See also ..testing for public testing utilities. | ||||||
""" | ||||||
|
||||||
from __future__ import annotations | ||||||
|
||||||
import math | ||||||
from types import ModuleType | ||||||
from typing import cast | ||||||
from typing import Any, cast | ||||||
|
||||||
import numpy as np | ||||||
import pytest | ||||||
|
||||||
from ._utils._compat import ( | ||||||
array_namespace, | ||||||
is_array_api_strict_namespace, | ||||||
is_cupy_namespace, | ||||||
is_dask_namespace, | ||||||
is_jax_namespace, | ||||||
is_numpy_namespace, | ||||||
is_pydata_sparse_namespace, | ||||||
is_torch_namespace, | ||||||
to_device, | ||||||
) | ||||||
from ._utils._typing import Array | ||||||
from ._utils._typing import Array, Device | ||||||
|
||||||
__all__ = ["xp_assert_close", "xp_assert_equal"] | ||||||
__all__ = ["as_numpy_array", "xp_assert_close", "xp_assert_equal", "xp_assert_less"] | ||||||
|
||||||
|
||||||
def _check_ns_shape_dtype( | ||||||
actual: Array, desired: Array | ||||||
actual: Array, | ||||||
desired: Array, | ||||||
check_dtype: bool, | ||||||
check_shape: bool, | ||||||
check_scalar: bool, | ||||||
) -> ModuleType: # numpydoc ignore=RT03 | ||||||
""" | ||||||
Assert that namespace, shape and dtype of the two arrays match. | ||||||
|
@@ -47,43 +57,67 @@ def _check_ns_shape_dtype( | |||||
msg = f"namespaces do not match: {actual_xp} != f{desired_xp}" | ||||||
assert actual_xp == desired_xp, msg | ||||||
|
||||||
actual_shape = actual.shape | ||||||
desired_shape = desired.shape | ||||||
if is_dask_namespace(desired_xp): | ||||||
# Dask uses nan instead of None for unknown shapes | ||||||
if any(math.isnan(i) for i in cast(tuple[float, ...], actual_shape)): | ||||||
actual_shape = actual.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
if any(math.isnan(i) for i in cast(tuple[float, ...], desired_shape)): | ||||||
desired_shape = desired.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
|
||||||
msg = f"shapes do not match: {actual_shape} != f{desired_shape}" | ||||||
assert actual_shape == desired_shape, msg | ||||||
|
||||||
msg = f"dtypes do not match: {actual.dtype} != {desired.dtype}" | ||||||
assert actual.dtype == desired.dtype, msg | ||||||
if check_shape: | ||||||
actual_shape = actual.shape | ||||||
desired_shape = desired.shape | ||||||
Comment on lines
+61
to
+62
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This may fail if we start using it in scipy, because scipy overrides array_namespace to return numpy for scalars and lists. Maybe out of scope for this PR I though? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Huh. Yeah let's do l consider that in a SciPy PR that attempts to use this there. Then we can decide whether/what changes are needed. |
||||||
if is_dask_namespace(desired_xp): | ||||||
# Dask uses nan instead of None for unknown shapes | ||||||
if any(math.isnan(i) for i in cast(tuple[float, ...], actual_shape)): | ||||||
actual_shape = actual.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
if any(math.isnan(i) for i in cast(tuple[float, ...], desired_shape)): | ||||||
desired_shape = desired.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
|
||||||
msg = f"shapes do not match: {actual_shape} != f{desired_shape}" | ||||||
assert actual_shape == desired_shape, msg | ||||||
|
||||||
if check_dtype: | ||||||
msg = f"dtypes do not match: {actual.dtype} != {desired.dtype}" | ||||||
assert actual.dtype == desired.dtype, msg | ||||||
|
||||||
if is_numpy_namespace(actual_xp) and check_scalar: | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. scalar sounds fine to me. |
||||||
# only NumPy distinguishes between scalars and arrays; we do if check_scalar. | ||||||
_msg = ( | ||||||
"array-ness does not match:\n Actual: " | ||||||
f"{type(actual)}\n Desired: {type(desired)}" | ||||||
) | ||||||
assert np.isscalar(actual) == np.isscalar(desired), _msg | ||||||
|
||||||
return desired_xp | ||||||
|
||||||
|
||||||
def _prepare_for_test(array: Array, xp: ModuleType) -> Array: | ||||||
def as_numpy_array(array: Array, *, xp: ModuleType) -> np.typing.NDArray[Any]: # type: ignore[explicit-any] | ||||||
""" | ||||||
Ensure that the array can be compared with xp.testing or np.testing. | ||||||
|
||||||
This involves transferring it from GPU to CPU memory, densifying it, etc. | ||||||
Convert array to NumPy, bypassing GPU-CPU transfer guards and densification guards. | ||||||
""" | ||||||
if is_torch_namespace(xp): | ||||||
return array.cpu() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
if is_cupy_namespace(xp): | ||||||
return xp.asnumpy(array) | ||||||
if is_pydata_sparse_namespace(xp): | ||||||
return array.todense() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
|
||||||
if is_torch_namespace(xp): | ||||||
array = to_device(array, "cpu") | ||||||
if is_array_api_strict_namespace(xp): | ||||||
# Note: we deliberately did not add a `.to_device` method in _typing.pyi | ||||||
# even if it is required by the standard as many backends don't support it | ||||||
return array.to_device(xp.Device("CPU_DEVICE")) # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||||||
# Note: nothing to do for CuPy, because it uses a bespoke test function | ||||||
return array | ||||||
cpu: Device = xp.Device("CPU_DEVICE") | ||||||
array = to_device(array, cpu) | ||||||
if is_jax_namespace(xp): | ||||||
import jax | ||||||
|
||||||
# Note: only needed if the transfer guard is enabled | ||||||
cpu = cast(Device, jax.devices("cpu")[0]) | ||||||
array = to_device(array, cpu) | ||||||
|
||||||
def xp_assert_equal(actual: Array, desired: Array, err_msg: str = "") -> None: | ||||||
return np.asarray(array) | ||||||
|
||||||
|
||||||
def xp_assert_equal( | ||||||
actual: Array, | ||||||
desired: Array, | ||||||
*, | ||||||
lucascolley marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
err_msg: str = "", | ||||||
lucascolley marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
check_dtype: bool = True, | ||||||
check_shape: bool = True, | ||||||
check_scalar: bool = False, | ||||||
) -> None: | ||||||
""" | ||||||
Array-API compatible version of `np.testing.assert_array_equal`. | ||||||
|
||||||
|
@@ -95,34 +129,56 @@ def xp_assert_equal(actual: Array, desired: Array, err_msg: str = "") -> None: | |||||
The expected array (typically hardcoded). | ||||||
err_msg : str, optional | ||||||
Error message to display on failure. | ||||||
check_dtype, check_shape : bool, default: True | ||||||
Whether to check agreement between actual and desired dtypes and shapes | ||||||
check_scalar : bool, default: False | ||||||
NumPy only: whether to check agreement between actual and desired types - | ||||||
0d array vs scalar. | ||||||
Comment on lines
+134
to
+136
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. The default for this is the opposite as in scipy There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I meant to mention that, so thanks for bringing it up. I think it should be There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. array-api-extra tests? If so, yes, that sounds fine, but we should open an issue for that before merging this There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes. Sure, I'll open an issue. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. |
||||||
|
||||||
See Also | ||||||
-------- | ||||||
xp_assert_close : Similar function for inexact equality checks. | ||||||
numpy.testing.assert_array_equal : Similar function for NumPy arrays. | ||||||
""" | ||||||
xp = _check_ns_shape_dtype(actual, desired) | ||||||
actual = _prepare_for_test(actual, xp) | ||||||
desired = _prepare_for_test(desired, xp) | ||||||
xp = _check_ns_shape_dtype(actual, desired, check_dtype, check_shape, check_scalar) | ||||||
actual_np = as_numpy_array(actual, xp=xp) | ||||||
desired_np = as_numpy_array(desired, xp=xp) | ||||||
np.testing.assert_array_equal(actual_np, desired_np, err_msg=err_msg) | ||||||
|
||||||
if is_cupy_namespace(xp): | ||||||
xp.testing.assert_array_equal(actual, desired, err_msg=err_msg) | ||||||
elif is_torch_namespace(xp): | ||||||
# PyTorch recommends using `rtol=0, atol=0` like this | ||||||
# to test for exact equality | ||||||
xp.testing.assert_close( | ||||||
actual, | ||||||
desired, | ||||||
rtol=0, | ||||||
atol=0, | ||||||
equal_nan=True, | ||||||
check_dtype=False, | ||||||
msg=err_msg or None, | ||||||
) | ||||||
else: | ||||||
import numpy as np # pylint: disable=import-outside-toplevel | ||||||
|
||||||
np.testing.assert_array_equal(actual, desired, err_msg=err_msg) | ||||||
def xp_assert_less( | ||||||
x: Array, | ||||||
y: Array, | ||||||
*, | ||||||
err_msg: str = "", | ||||||
check_dtype: bool = True, | ||||||
check_shape: bool = True, | ||||||
check_scalar: bool = False, | ||||||
) -> None: | ||||||
""" | ||||||
Array-API compatible version of `np.testing.assert_array_less`. | ||||||
|
||||||
Parameters | ||||||
---------- | ||||||
x, y : Array | ||||||
The arrays to compare according to ``x < y`` (elementwise). | ||||||
err_msg : str, optional | ||||||
Error message to display on failure. | ||||||
check_dtype, check_shape : bool, default: True | ||||||
Whether to check agreement between actual and desired dtypes and shapes | ||||||
check_scalar : bool, default: False | ||||||
NumPy only: whether to check agreement between actual and desired types - | ||||||
0d array vs scalar. | ||||||
|
||||||
See Also | ||||||
-------- | ||||||
xp_assert_close : Similar function for inexact equality checks. | ||||||
numpy.testing.assert_array_equal : Similar function for NumPy arrays. | ||||||
""" | ||||||
xp = _check_ns_shape_dtype(x, y, check_dtype, check_shape, check_scalar) | ||||||
x_np = as_numpy_array(x, xp=xp) | ||||||
y_np = as_numpy_array(y, xp=xp) | ||||||
np.testing.assert_array_less(x_np, y_np, err_msg=err_msg) | ||||||
|
||||||
|
||||||
def xp_assert_close( | ||||||
|
@@ -132,6 +188,9 @@ def xp_assert_close( | |||||
rtol: float | None = None, | ||||||
atol: float = 0, | ||||||
err_msg: str = "", | ||||||
check_dtype: bool = True, | ||||||
check_shape: bool = True, | ||||||
check_scalar: bool = False, | ||||||
) -> None: | ||||||
""" | ||||||
Array-API compatible version of `np.testing.assert_allclose`. | ||||||
|
@@ -148,6 +207,11 @@ def xp_assert_close( | |||||
Absolute tolerance. Default: 0. | ||||||
err_msg : str, optional | ||||||
Error message to display on failure. | ||||||
check_dtype, check_shape : bool, default: True | ||||||
Whether to check agreement between actual and desired dtypes and shapes | ||||||
check_scalar : bool, default: False | ||||||
NumPy only: whether to check agreement between actual and desired types - | ||||||
0d array vs scalar. | ||||||
|
||||||
See Also | ||||||
-------- | ||||||
|
@@ -159,40 +223,26 @@ def xp_assert_close( | |||||
----- | ||||||
The default `atol` and `rtol` differ from `xp.all(xpx.isclose(a, b))`. | ||||||
""" | ||||||
xp = _check_ns_shape_dtype(actual, desired) | ||||||
|
||||||
floating = xp.isdtype(actual.dtype, ("real floating", "complex floating")) | ||||||
if rtol is None and floating: | ||||||
# multiplier of 4 is used as for `np.float64` this puts the default `rtol` | ||||||
# roughly half way between sqrt(eps) and the default for | ||||||
# `numpy.testing.assert_allclose`, 1e-7 | ||||||
rtol = xp.finfo(actual.dtype).eps ** 0.5 * 4 | ||||||
elif rtol is None: | ||||||
rtol = 1e-7 | ||||||
|
||||||
actual = _prepare_for_test(actual, xp) | ||||||
desired = _prepare_for_test(desired, xp) | ||||||
|
||||||
if is_cupy_namespace(xp): | ||||||
xp.testing.assert_allclose( | ||||||
actual, desired, rtol=rtol, atol=atol, err_msg=err_msg | ||||||
) | ||||||
elif is_torch_namespace(xp): | ||||||
xp.testing.assert_close( | ||||||
actual, desired, rtol=rtol, atol=atol, equal_nan=True, msg=err_msg or None | ||||||
) | ||||||
else: | ||||||
import numpy as np # pylint: disable=import-outside-toplevel | ||||||
|
||||||
# JAX/Dask arrays work directly with `np.testing` | ||||||
assert isinstance(rtol, float) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This was probably added to avoid the pyright error below? I don't think pyright should make us do this sort of thing. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Indeed, pyright is failing to narrow the type of rtol after |
||||||
np.testing.assert_allclose( # type: ignore[call-overload] # pyright: ignore[reportCallIssue] | ||||||
actual, # pyright: ignore[reportArgumentType] | ||||||
desired, # pyright: ignore[reportArgumentType] | ||||||
rtol=rtol, | ||||||
atol=atol, | ||||||
err_msg=err_msg, | ||||||
) | ||||||
xp = _check_ns_shape_dtype(actual, desired, check_dtype, check_shape, check_scalar) | ||||||
|
||||||
if rtol is None: | ||||||
if xp.isdtype(actual.dtype, ("real floating", "complex floating")): | ||||||
# multiplier of 4 is used as for `np.float64` this puts the default `rtol` | ||||||
# roughly half way between sqrt(eps) and the default for | ||||||
# `numpy.testing.assert_allclose`, 1e-7 | ||||||
rtol = xp.finfo(actual.dtype).eps ** 0.5 * 4 | ||||||
else: | ||||||
rtol = 1e-7 | ||||||
|
||||||
actual_np = as_numpy_array(actual, xp=xp) | ||||||
desired_np = as_numpy_array(desired, xp=xp) | ||||||
np.testing.assert_allclose( # pyright: ignore[reportCallIssue] | ||||||
actual_np, | ||||||
desired_np, | ||||||
rtol=rtol, # pyright: ignore[reportArgumentType] | ||||||
atol=atol, | ||||||
err_msg=err_msg, | ||||||
) | ||||||
|
||||||
|
||||||
def xfail( | ||||||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is this OK? Sometimes it was imported within test functions below.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Today it is OK, as this module is not imported automatically from the outer scope.
In the long run though, we want to move this module to public at which point it won't be a good design anymore (although it remains to be seen if any Array library in real life can achieve not to have numpy as a hard dependency...)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes, I think it would be fine to make these public API once they are ready, with the caveat that NumPy is required. We are really striving for minimal runtime dependencies rather than test time dependencies downstream, at least for now.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This module heavily relies on
np.testing.assert*
anyway.We'll just need to add a test that
import array_api_extra
doesn't import numpy.