Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add testing of reciprocal, cumulative_prod from 2024.12 spec revision #324

Merged
merged 2 commits into from
Feb 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 16 additions & 0 deletions array_api_tests/test_operators_and_elementwise_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -1570,6 +1570,22 @@ def test_real(x):
unary_assert_against_refimpl("real", x, out, operator.attrgetter("real"))


@pytest.mark.min_version("2024.12")
@given(hh.arrays(dtype=hh.floating_dtypes, shape=hh.shapes(), elements=finite_kw))
def test_reciprocal(x):
out = xp.reciprocal(x)
ph.assert_dtype("reciprocal", in_dtype=x.dtype, out_dtype=out.dtype)
ph.assert_shape("reciprocal", out_shape=out.shape, expected=x.shape)
refimpl = lambda x: 1.0 / x
unary_assert_against_refimpl(
"reciprocal",
x,
out,
refimpl,
strict_check=True,
)


@pytest.mark.skip(reason="flaky")
@pytest.mark.parametrize("ctx", make_binary_params("remainder", dh.real_dtypes))
@given(data=st.data())
Expand Down
58 changes: 58 additions & 0 deletions array_api_tests/test_statistical_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,64 @@ def test_cumulative_sum(x, data):
idx=out_idx.raw, out=out_val,
expected=expected)



@pytest.mark.min_version("2024.12")
@pytest.mark.unvectorized
@given(
x=hh.arrays(
dtype=hh.numeric_dtypes,
shape=hh.shapes(min_dims=1)),
data=st.data(),
)
def test_cumulative_prod(x, data):
axes = st.integers(-x.ndim, x.ndim - 1)
if x.ndim == 1:
axes = axes | st.none()
axis = data.draw(axes, label='axis')
_axis, = sh.normalize_axis(axis, x.ndim)
dtype = data.draw(kwarg_dtypes(x.dtype))
include_initial = data.draw(st.booleans(), label="include_initial")

kw = data.draw(
hh.specified_kwargs(
("axis", axis, None),
("dtype", dtype, None),
("include_initial", include_initial, False),
),
label="kw",
)

out = xp.cumulative_prod(x, **kw)

expected_shape = list(x.shape)
if include_initial:
expected_shape[_axis] += 1
expected_shape = tuple(expected_shape)
ph.assert_shape("cumulative_prod", out_shape=out.shape, expected=expected_shape)

expected_dtype = dh.accumulation_result_dtype(x.dtype, dtype)
if expected_dtype is None:
# If a default uint cannot exist (i.e. in PyTorch which doesn't support
# uint32 or uint64), we skip testing the output dtype.
# See https://github.com/data-apis/array-api-tests/issues/106
if x.dtype in dh.uint_dtypes:
assert dh.is_int_dtype(out.dtype) # sanity check
else:
ph.assert_dtype("cumulative_prod", in_dtype=x.dtype, out_dtype=out.dtype, expected=expected_dtype)

scalar_type = dh.get_scalar_type(out.dtype)

for x_idx, out_idx, in iter_indices(x.shape, expected_shape, skip_axes=_axis):
#x_arr = x[x_idx.raw]
out_arr = out[out_idx.raw]

if include_initial:
ph.assert_scalar_equals("cumulative_prod", type_=scalar_type, idx=out_idx.raw, out=out_arr[0], expected=1)

#TODO: add value testing of cumulative_prod


def kwarg_dtypes(dtype: DataType) -> st.SearchStrategy[Optional[DataType]]:
dtypes = [d2 for d1, d2 in dh.promotion_table if d1 == dtype]
dtypes = [d for d in dtypes if not isinstance(d, _UndefinedStub)]
Expand Down