-
Notifications
You must be signed in to change notification settings - Fork 528
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(fix)Make the weighted avarange fit for all kinds of systems #4593
base: devel
Are you sure you want to change the base?
Conversation
📝 WalkthroughWalkthroughThis pull request modifies the testing functionalities within the DeePMD framework. In Changes
Sequence Diagram(s)sequenceDiagram
participant Caller
participant test_ener
participant Logger
participant DetailFile
Caller->>test_ener: Invoke test_ener(test_data, flags, ...)
test_ener->>test_ener: Initialize error dictionary (err_part)
alt Energy flag set
test_ener->>test_ener: Compute energy error metric
end
alt Force flag set
test_ener->>Logger: Log force metric information
end
alt Virial flag set
test_ener->>Logger: Log virial metric information
end
test_ener->>DetailFile: Write headers and detailed output if applicable
test_ener->>Caller: Return (error arrays, error codes)
sequenceDiagram
participant TestCase
participant WeightedAvgFunc
participant Assertion
TestCase->>WeightedAvgFunc: Call fake_test() / fake_test_ori() with system data
WeightedAvgFunc->>WeightedAvgFunc: Compute aggregated error metrics
WeightedAvgFunc->>TestCase: Return computed results
TestCase->>Assertion: Assert computed values match expected outcomes
Possibly related PRs
Suggested reviewers
📜 Recent review detailsConfiguration used: CodeRabbit UI 📒 Files selected for processing (1)
🔇 Additional comments (5)
✨ Finishing Touches
Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media? 🪧 TipsChatThere are 3 ways to chat with CodeRabbit:
Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. CodeRabbit Commands (Invoked using PR comments)
Other keywords and placeholders
CodeRabbit Configuration File (
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (4)
source/tests/pt/test_weighted_avg.py (1)
70-101
: Well-structured test cases with good coverage!The test cases effectively validate different component combinations. Consider making the variable names more descriptive for better readability.
Consider renaming variables to be more descriptive:
- expected_mae_f = (2*3 +1*3 )/(3+3) + expected_force_mae = (2*3 + 1*3)/(3+3) - expected_mae_v = (3*5 +1*5 )/(5+5) + expected_virial_mae = (3*5 + 1*5)/(5+5)deepmd/entrypoints/test.py (3)
331-333
: Good addition of component flags!Consider using more descriptive variable names for better clarity.
- find_energy = test_data.get('find_energy') - find_force = test_data.get('find_force') - find_virial = test_data.get('find_virial') + has_energy_component = test_data.get('find_energy') + has_force_component = test_data.get('find_force') + has_virial_component = test_data.get('find_virial')
146-167
: Good selective error collection logic!Consider adding error handling for missing components.
Add error handling for missing components:
err_part = {} + if test_data.get('find_energy') is None: + log.warning("Energy component flag not found in test data") + if test_data.get('find_force') is None: + log.warning("Force component flag not found in test data") + if test_data.get('find_virial') is None: + log.warning("Virial component flag not found in test data") if find_energy == 1: err_part['mae_e'] = err['mae_e']
459-470
: Good conditional logging implementation!Consider adding debug logging for better troubleshooting.
Add debug logging:
+ log.debug(f"Processing system with energy={find_energy}, force={find_force}, virial={find_virial}") if find_force == 1: if not out_put_spin: log.info(f"Force MAE : {mae_f:e} eV/A")
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
deepmd/entrypoints/test.py
(12 hunks)source/tests/pt/test_weighted_avg.py
(1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (19)
- GitHub Check: Test Python (5, 3.12)
- GitHub Check: Test Python (4, 3.12)
- GitHub Check: Test Python (4, 3.9)
- GitHub Check: Test Python (3, 3.12)
- GitHub Check: Build C++ (clang, clang)
- GitHub Check: Test Python (3, 3.9)
- GitHub Check: Build C++ (rocm, rocm)
- GitHub Check: Test Python (2, 3.12)
- GitHub Check: Build C++ (cuda120, cuda)
- GitHub Check: Analyze (python)
- GitHub Check: Test Python (2, 3.9)
- GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
- GitHub Check: Build C++ (cuda, cuda)
- GitHub Check: Analyze (javascript-typescript)
- GitHub Check: Test Python (1, 3.12)
- GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
- GitHub Check: Test Python (1, 3.9)
- GitHub Check: Build C++ (cpu, cpu)
- GitHub Check: Analyze (c-cpp)
🔇 Additional comments (3)
source/tests/pt/test_weighted_avg.py (3)
7-31
: Well-structured implementation for handling different error metrics!The function effectively handles different combinations of energy, force, and virial metrics with clean conditional logic and proper error collection.
33-39
: Clean baseline implementation!The function provides a good reference point for comparing weighted averages with and without filtering.
43-67
: Comprehensive test coverage for energy-only metrics!The test case effectively validates:
- Correct weighted average calculations
- Proper handling of energy-only systems
- Edge cases with force and virial metrics
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (4)
source/tests/pt/test_weighted_avg.py (2)
11-36
: Consider adding type hints and docstring.The function lacks type hints and documentation which would improve code maintainability and help users understand the expected input/output format.
Apply this diff to add type hints and docstring:
-def test(all_sys): +def test(all_sys: list[tuple[dict, int, int, int]]) -> dict[str, tuple[float, int]]: + """Calculate weighted average of errors with selective inclusion of metrics. + + Args: + all_sys: List of tuples containing (error_dict, find_energy, find_force, find_virial) + where error_dict contains the error metrics + + Returns: + Dictionary mapping error names to tuples of (error_value, sample_size) + """ err_coll = []
38-44
: Add type hints and docstring to test_ori function.Similar to the
test
function, this function would benefit from type hints and documentation.Apply this diff:
-def test_ori(all_sys): +def test_ori(all_sys: list[tuple[dict, int, int, int]]) -> dict[str, tuple[float, int]]: + """Calculate weighted average of all errors without selective inclusion. + + Args: + all_sys: List of tuples containing (error_dict, find_energy, find_force, find_virial) + where error_dict contains the error metrics + + Returns: + Dictionary mapping error names to tuples of (error_value, sample_size) + """ err_coll = []deepmd/entrypoints/test.py (2)
331-334
: Consider using dictionary get() with default values.The code uses
get()
without default values which could return None. Consider providing default values for safety.Apply this diff:
- find_energy = test_data.get("find_energy") - find_force = test_data.get("find_force") - find_virial = test_data.get("find_virial") + find_energy = test_data.get("find_energy", 0) + find_force = test_data.get("find_force", 0) + find_virial = test_data.get("find_virial", 0)
744-747
: Use f-strings instead of % operator for string formatting.The code uses the older % operator for string formatting. Consider using f-strings for better readability and maintainability.
Apply this diff:
- detail_path.with_suffix(".dos.out.%.d" % ii), + detail_path.with_suffix(f".dos.out.{ii:d}"), frame_output, - header="%s - %.d: data_dos pred_dos" % (system, ii), + header=f"{system} - {ii:d}: data_dos pred_dos",- detail_path.with_suffix(".ados.out.%.d" % ii), + detail_path.with_suffix(f".ados.out.{ii:d}"), frame_output, - header="%s - %.d: data_ados pred_ados" % (system, ii), + header=f"{system} - {ii:d}: data_ados pred_ados",Also applies to: 758-761
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (2)
deepmd/entrypoints/test.py
(10 hunks)source/tests/pt/test_weighted_avg.py
(1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (19)
- GitHub Check: Test Python (3, 3.12)
- GitHub Check: Test Python (3, 3.9)
- GitHub Check: Test Python (2, 3.12)
- GitHub Check: Test Python (2, 3.9)
- GitHub Check: Test Python (1, 3.12)
- GitHub Check: Test Python (1, 3.9)
- GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
- GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
- GitHub Check: Analyze (python)
- GitHub Check: Analyze (javascript-typescript)
- GitHub Check: Analyze (c-cpp)
- GitHub Check: Build wheels for cp310-manylinux_aarch64
- GitHub Check: Build wheels for cp311-win_amd64
- GitHub Check: Build wheels for cp311-macosx_arm64
- GitHub Check: Build wheels for cp311-macosx_x86_64
- GitHub Check: Build wheels for cp311-manylinux_x86_64
- GitHub Check: Build wheels for cp311-manylinux_x86_64
- GitHub Check: Test C++ (false)
- GitHub Check: Test C++ (true)
🔇 Additional comments (6)
source/tests/pt/test_weighted_avg.py (3)
47-113
: LGTM! Well-structured test case for energy-only scenario.The test case thoroughly validates the weighted average calculation for energy metrics, including proper assertions for both the main function and original implementation.
114-171
: LGTM! Comprehensive test case for energy and force metrics.The test case effectively validates the combined energy and force calculations, with appropriate assertions to verify the differences between the two implementations.
172-229
: LGTM! Complete test coverage for all components.The test case provides thorough validation of all metrics (energy, force, virial) with appropriate assertions.
deepmd/entrypoints/test.py (3)
137-168
: LGTM! Improved error handling with selective metric inclusion.The changes enhance error handling by:
- Using flags to determine which metrics to include
- Organizing errors into a separate dictionary
- Handling different force metric cases (regular vs spin)
459-468
: LGTM! Improved conditional logging for force metrics.The changes enhance logging by:
- Only logging when force data is present
- Handling different force metric types (regular vs spin)
469-469
: LGTM! Added condition for virial logging.The change ensures virial metrics are only logged when appropriate (PBC enabled and virial data present).
…md-kit into debug-weightedavg
for more information, see https://pre-commit.ci
…md-kit into debug-weightedavg
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (3)
source/tests/pt/test_weighted_avg.py (3)
11-36
: Add type hints and docstring for better maintainability.The function needs documentation and type hints to improve maintainability. Also, consider using an enum or constants for flag values.
-def fake_test(all_sys): +from typing import List, Dict, Tuple, Union + +def fake_test(all_sys: List[Tuple[Dict[str, Tuple[float, float]], int, int, int]]) -> Dict[str, float]: + """Calculate weighted average of error metrics based on system components. + + Args: + all_sys: List of tuples containing (error_dict, has_energy, has_force, has_virial) + where error_dict contains metrics like mae_e, rmse_e etc. + + Returns: + Dictionary containing weighted averages of error metrics. + """Also, add error handling for missing force metrics:
if find_force == 1: + if not any(key in err for key in ['rmse_f', 'rmse_fr']): + raise KeyError("No force metrics found in error dictionary") if "rmse_f" in err:
38-44
: Add type hints and docstring for consistency.For consistency with
fake_test
, add type hints and documentation.-def fake_test_ori(all_sys): +def fake_test_ori(all_sys: List[Tuple[Dict[str, Tuple[float, float]], int, int, int]]) -> Dict[str, float]: + """Calculate weighted average of error metrics ignoring component flags. + + Used as a baseline for comparison with fake_test. + + Args: + all_sys: List of tuples containing (error_dict, has_energy, has_force, has_virial) + + Returns: + Dictionary containing weighted averages of all error metrics. + """
47-229
: Enhance test maintainability and coverage.While the test cases are comprehensive, consider these improvements:
- Move test data to class-level setup
- Add docstrings to test methods
- Add negative test cases
Example refactor:
class TestWeightedAverage(unittest.TestCase): + def setUp(self): + """Set up test data.""" + # Define common test data structure + self.base_system = { + "mae_e": (2, 2), + "mae_ea": (4, 2), + "rmse_e": (3, 2), + "rmse_ea": (5, 2), + "mae_f": (2, 3), + "rmse_f": (1, 3), + "mae_v": (3, 5), + "rmse_v": (3, 3), + } + def test_case1_energy_only(self): + """Test weighted average calculation with energy metrics only."""Add negative test cases:
def test_invalid_input(self): """Test handling of invalid input data.""" # Test with empty system list with self.assertRaises(ValueError): fake_test([]) # Test with invalid flag values invalid_sys = [(self.base_system, 2, 0, 0)] # Invalid energy flag with self.assertRaises(ValueError): fake_test(invalid_sys)
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
source/tests/pt/test_weighted_avg.py
(1 hunks)
⏰ Context from checks skipped due to timeout of 90000ms (20)
- GitHub Check: Build wheels for cp310-manylinux_aarch64
- GitHub Check: Test Python (6, 3.12)
- GitHub Check: Test Python (6, 3.9)
- GitHub Check: Test Python (5, 3.12)
- GitHub Check: Test Python (5, 3.9)
- GitHub Check: Test Python (4, 3.12)
- GitHub Check: Test Python (4, 3.9)
- GitHub Check: Test Python (3, 3.12)
- GitHub Check: Test Python (3, 3.9)
- GitHub Check: Test Python (2, 3.12)
- GitHub Check: Test Python (2, 3.9)
- GitHub Check: Test Python (1, 3.12)
- GitHub Check: Test Python (1, 3.9)
- GitHub Check: Build C library (2.14, >=2.5.0rc0,<2.15, libdeepmd_c_cu11.tar.gz)
- GitHub Check: Build C library (2.18, libdeepmd_c.tar.gz)
- GitHub Check: Analyze (python)
- GitHub Check: Analyze (javascript-typescript)
- GitHub Check: Analyze (c-cpp)
- GitHub Check: Test C++ (false)
- GitHub Check: Test C++ (true)
🔇 Additional comments (2)
source/tests/pt/test_weighted_avg.py (2)
1-8
: LGTM! Imports are well-organized.The license is properly specified and imports follow Python conventions.
231-232
: LGTM! Standard unittest main block.Follows Python conventions for unittest execution.
…md-kit into debug-weightedavg
for more information, see https://pre-commit.ci
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 2
🔭 Outside diff range comments (2)
deepmd/entrypoints/test.py (2)
562-574
:⚠️ Potential issueFix incorrect type hints.
The function's return type hint
tuple[list[np.ndarray], list[int]]
doesn't match the actual return type, which is a dictionary of tuples containing error metrics and their sizes.Update the type hint to match the actual return type:
-) -> tuple[list[np.ndarray], list[int]]: +) -> dict[str, tuple[float, int]]:Also, remove the commented-out flags from the return statements:
- } # find_energy,find_force,find_virial, + }Also applies to: 575-588
137-169
: 💡 Verification agent🧩 Analysis chain
Verify the impact of removing error filtering.
The commented-out code previously filtered errors based on flags (
find_energy
,find_force
,find_virial
). Removing this filtering could lead to inconsistencies in error reporting, especially when certain metrics are not available or relevant.Run the following script to verify error handling in test cases:
🏁 Script executed:
#!/bin/bash # Description: Check test cases for error handling patterns. # Search for test cases that rely on filtered errors rg -A 5 'test_ener.*find_' 'source/tests' # Search for error dictionary usage in test cases rg -A 5 'err\[.*(mae|rmse)_(e|f|v)' 'source/tests'Length of output: 4540
Inconsistent error reporting: Unfiltered error dictionary vs. filtered expectations in tests
The removal of the error filtering (i.e., the commented-out aggregation logic that created a filtered
err_part
) in thetest_ener
function means that the function now returns a complete error dictionary. However, test cases insource/tests/pt/test_weighted_avg.py
still expect the filtered error metrics (e.g., keys such as"mae_e"
,"rmse_e"
, etc., populated conditionally viafind_energy
,find_force
, andfind_virial
). This mismatch can lead to discrepancies in the averaged error computation or even test failures if additional keys or unexpected values are present.
- Action Item: Either update the test case expectations to work with the full error dictionary or reintroduce/adjust the filtering logic to ensure that the returned error dictionary strictly contains the expected keys and values.
🧹 Nitpick comments (1)
deepmd/entrypoints/test.py (1)
735-738
: Use f-strings for better readability.The code uses the
%
operator for string formatting, which is outdated in Python. Using f-strings would improve readability and maintainability.Apply this diff to update the string formatting:
- detail_path.with_suffix(".dos.out.%.d" % ii), - header="%s - %.d: data_dos pred_dos" % (system, ii), + detail_path.with_suffix(f".dos.out.{ii}"), + header=f"{system} - {ii}: data_dos pred_dos", - detail_path.with_suffix(".ados.out.%.d" % ii), - header="%s - %.d: data_ados pred_ados" % (system, ii), + detail_path.with_suffix(f".ados.out.{ii}"), + header=f"{system} - {ii}: data_ados pred_ados", - detail_path.with_suffix(".property.out.%.d" % ii), - header="%s - %.d: data_property pred_property" % (system, ii), + detail_path.with_suffix(f".property.out.{ii}"), + header=f"{system} - {ii}: data_property pred_property", - detail_path.with_suffix(".aproperty.out.%.d" % ii), - header="%s - %.d: data_aproperty pred_aproperty" % (system, ii), + detail_path.with_suffix(f".aproperty.out.{ii}"), + header=f"{system} - {ii}: data_aproperty pred_aproperty",Also applies to: 749-752, 891-894, 905-908
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
deepmd/entrypoints/test.py
(12 hunks)
🧰 Additional context used
🪛 Ruff (0.8.2)
deepmd/entrypoints/test.py
332-332: Local variable find_energy
is assigned to but never used
Remove assignment to unused variable find_energy
(F841)
⏰ Context from checks skipped due to timeout of 90000ms (5)
- GitHub Check: Test C++ (false)
- GitHub Check: Test C++ (true)
- GitHub Check: Analyze (python)
- GitHub Check: Analyze (javascript-typescript)
- GitHub Check: Analyze (c-cpp)
🔇 Additional comments (1)
deepmd/entrypoints/test.py (1)
810-812
: LGTM! Improved code consistency.The changes to the property test function improve readability by:
- Using consistent variable names (
property
instead of mixed usage)- Using
task_dim
consistently for dimensionalityAlso applies to: 863-864, 868-869
deepmd/entrypoints/test.py
Outdated
if find_force == 1: | ||
if not out_put_spin: | ||
log.info(f"Force MAE : {mae_f:e} eV/A") | ||
log.info(f"Force RMSE : {rmse_f:e} eV/A") | ||
else: | ||
log.info(f"Force atom MAE : {mae_fr:e} eV/A") | ||
log.info(f"Force atom RMSE : {rmse_fr:e} eV/A") | ||
log.info(f"Force spin MAE : {mae_fm:e} eV/uB") | ||
log.info(f"Force spin RMSE : {rmse_fm:e} eV/uB") | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
🛠️ Refactor suggestion
Resolve inconsistency in flag usage.
The flags find_force
and find_virial
are used in conditional logging but were marked for removal earlier. We need to maintain consistency in error handling and logging.
Consider one of these approaches:
- Keep the flags and restore the error filtering code
- Remove conditional logging and always log all available metrics
If keeping the flags, restore the error filtering code:
+ err_part = {}
+ if find_energy == 1:
+ err_part["mae_e"] = err["mae_e"]
+ err_part["mae_ea"] = err["mae_ea"]
+ err_part["rmse_e"] = err["rmse_e"]
+ err_part["rmse_ea"] = err["rmse_ea"]
Also applies to: 470-470
find_energy = test_data.get("find_energy") | ||
find_force = test_data.get("find_force") | ||
find_virial = test_data.get("find_virial") |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Remove unused flags.
The flags find_energy
, find_force
, and find_virial
are obtained from test_data
but are not used in error filtering since the filtering code is commented out. This creates dead code.
Apply this diff to remove the unused assignments:
- find_energy = test_data.get("find_energy")
- find_force = test_data.get("find_force")
- find_virial = test_data.get("find_virial")
📝 Committable suggestion
‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.
find_energy = test_data.get("find_energy") | |
find_force = test_data.get("find_force") | |
find_virial = test_data.get("find_virial") |
🧰 Tools
🪛 Ruff (0.8.2)
332-332: Local variable find_energy
is assigned to but never used
Remove assignment to unused variable find_energy
(F841)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (2)
deepmd/entrypoints/test.py (2)
734-750
: Use f-strings for string formatting.For better readability and consistency with modern Python practices, consider using f-strings instead of the % formatting style.
Apply this diff to update the string formatting:
- detail_path.with_suffix(".dos.out.%.d" % ii), + detail_path.with_suffix(f".dos.out.{ii:d}"), frame_output, - header="%s - %.d: data_dos pred_dos" % (system, ii), + header=f"{system} - {ii:d}: data_dos pred_dos", append=append_detail, ) save_txt_file( - detail_path.with_suffix(".ados.out.%.d" % ii), + detail_path.with_suffix(f".ados.out.{ii:d}"), frame_output, - header="%s - %.d: data_ados pred_ados" % (system, ii), + header=f"{system} - {ii:d}: data_ados pred_ados", append=append_detail, )
890-906
: Use f-strings for string formatting.For better readability and consistency with modern Python practices, consider using f-strings instead of the % formatting style.
Apply this diff to update the string formatting:
- detail_path.with_suffix(".property.out.%.d" % ii), + detail_path.with_suffix(f".property.out.{ii:d}"), frame_output, - header="%s - %.d: data_property pred_property" % (system, ii), + header=f"{system} - {ii:d}: data_property pred_property", append=append_detail, ) save_txt_file( - detail_path.with_suffix(".aproperty.out.%.d" % ii), + detail_path.with_suffix(f".aproperty.out.{ii:d}"), frame_output, - header="%s - %.d: data_aproperty pred_aproperty" % (system, ii), + header=f"{system} - {ii:d}: data_aproperty pred_aproperty", append=append_detail, )
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
deepmd/entrypoints/test.py
(12 hunks)
🔇 Additional comments (4)
deepmd/entrypoints/test.py (4)
137-145
: LGTM! Function signature update improves type safety.The updated function signature now correctly returns the error dictionary along with the flags, making the return type explicit and improving type safety.
146-167
: LGTM! Error filtering logic is now consistent.The error filtering logic has been improved to selectively include metrics based on the flags, addressing the inconsistency mentioned in past review comments.
809-811
: LGTM! Using task_dim improves flexibility.Using
dp.task_dim
for property dimensions makes the code more flexible and maintainable by relying on the model's configuration.
331-333
: Static analysis warning can be ignored.The flags
find_energy
,find_force
, andfind_virial
are now properly used in error filtering (lines 148-165) and returned from the function. The static analysis warning is outdated.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Actionable comments posted: 0
🧹 Nitpick comments (1)
deepmd/entrypoints/test.py (1)
744-747
: Modernize string formatting.Replace old-style % string formatting with f-strings for better readability and maintainability.
- detail_path.with_suffix(".dos.out.%.d" % ii), + detail_path.with_suffix(f".dos.out.{ii:d}"), - header="%s - %.d: data_dos pred_dos" % (system, ii), + header=f"{system} - {ii:d}: data_dos pred_dos",
📜 Review details
Configuration used: CodeRabbit UI
Review profile: CHILL
Plan: Pro
📒 Files selected for processing (1)
deepmd/entrypoints/test.py
(10 hunks)
🔇 Additional comments (4)
deepmd/entrypoints/test.py (4)
137-167
: LGTM! Improved error handling and type safety.The changes improve error handling by making the function return type explicit and filtering error metrics based on what was actually calculated. The structured error dictionary now only includes relevant metrics.
331-333
: LGTM! Resolved unused flag issues.The previously unused flags are now properly utilized for error filtering and conditional logging, addressing past review comments and static analysis warnings.
459-470
: LGTM! Consistent flag usage in logging.The changes implement consistent conditional logging based on the presence of force and virial calculations, with proper handling of spin calculations.
819-821
: LGTM! Consistent property testing implementation.The property testing implementation follows the same patterns as other test functions, with consistent dimension handling and error calculation.
Also applies to: 872-878
…md-kit into debug-weightedavg
Codecov ReportAttention: Patch coverage is
Additional details and impacted files@@ Coverage Diff @@
## devel #4593 +/- ##
==========================================
- Coverage 84.58% 84.57% -0.01%
==========================================
Files 680 680
Lines 64509 64527 +18
Branches 3540 3540
==========================================
+ Hits 54562 54575 +13
- Misses 8807 8812 +5
Partials 1140 1140 ☔ View full report in Codecov by Sentry. |
Summary by CodeRabbit
Refactor
Tests