|
| 1 | +# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> |
| 2 | +# |
| 3 | +# SPDX-License-Identifier: Apache-2.0 |
| 4 | +import pytest |
| 5 | + |
| 6 | +from haystack import Document |
| 7 | +from haystack.components.evaluators.document_ndcg import DocumentNDCGEvaluator |
| 8 | + |
| 9 | + |
| 10 | +def test_run_with_scores(): |
| 11 | + evaluator = DocumentNDCGEvaluator() |
| 12 | + result = evaluator.run( |
| 13 | + ground_truth_documents=[ |
| 14 | + [ |
| 15 | + Document(content="doc1", score=3), |
| 16 | + Document(content="doc2", score=2), |
| 17 | + Document(content="doc3", score=3), |
| 18 | + Document(content="doc6", score=2), |
| 19 | + Document(content="doc7", score=3), |
| 20 | + Document(content="doc8", score=2), |
| 21 | + ] |
| 22 | + ], |
| 23 | + retrieved_documents=[ |
| 24 | + [ |
| 25 | + Document(content="doc1"), |
| 26 | + Document(content="doc2"), |
| 27 | + Document(content="doc3"), |
| 28 | + Document(content="doc4"), |
| 29 | + Document(content="doc5"), |
| 30 | + ] |
| 31 | + ], |
| 32 | + ) |
| 33 | + assert result["individual_scores"][0] == pytest.approx(0.6592, abs=1e-4) |
| 34 | + assert result["score"] == pytest.approx(0.6592, abs=1e-4) |
| 35 | + |
| 36 | + |
| 37 | +def test_run_without_scores(): |
| 38 | + evaluator = DocumentNDCGEvaluator() |
| 39 | + result = evaluator.run( |
| 40 | + ground_truth_documents=[[Document(content="France"), Document(content="Paris")]], |
| 41 | + retrieved_documents=[[Document(content="France"), Document(content="Germany"), Document(content="Paris")]], |
| 42 | + ) |
| 43 | + assert result["individual_scores"][0] == pytest.approx(0.9197, abs=1e-4) |
| 44 | + assert result["score"] == pytest.approx(0.9197, abs=1e-4) |
| 45 | + |
| 46 | + |
| 47 | +def test_run_with_multiple_lists_of_docs(): |
| 48 | + evaluator = DocumentNDCGEvaluator() |
| 49 | + result = evaluator.run( |
| 50 | + ground_truth_documents=[ |
| 51 | + [Document(content="France"), Document(content="Paris")], |
| 52 | + [ |
| 53 | + Document(content="doc1", score=3), |
| 54 | + Document(content="doc2", score=2), |
| 55 | + Document(content="doc3", score=3), |
| 56 | + Document(content="doc6", score=2), |
| 57 | + Document(content="doc7", score=3), |
| 58 | + Document(content="doc8", score=2), |
| 59 | + ], |
| 60 | + ], |
| 61 | + retrieved_documents=[ |
| 62 | + [Document(content="France"), Document(content="Germany"), Document(content="Paris")], |
| 63 | + [ |
| 64 | + Document(content="doc1"), |
| 65 | + Document(content="doc2"), |
| 66 | + Document(content="doc3"), |
| 67 | + Document(content="doc4"), |
| 68 | + Document(content="doc5"), |
| 69 | + ], |
| 70 | + ], |
| 71 | + ) |
| 72 | + assert result["individual_scores"][0] == pytest.approx(0.9197, abs=1e-4) |
| 73 | + assert result["individual_scores"][1] == pytest.approx(0.6592, abs=1e-4) |
| 74 | + assert result["score"] == pytest.approx(0.7895, abs=1e-4) |
| 75 | + |
| 76 | + |
| 77 | +def test_run_with_different_lengths(): |
| 78 | + evaluator = DocumentNDCGEvaluator() |
| 79 | + with pytest.raises(ValueError): |
| 80 | + evaluator.run( |
| 81 | + ground_truth_documents=[[Document(content="Berlin")]], |
| 82 | + retrieved_documents=[[Document(content="Berlin")], [Document(content="London")]], |
| 83 | + ) |
| 84 | + with pytest.raises(ValueError): |
| 85 | + evaluator.run( |
| 86 | + ground_truth_documents=[[Document(content="Berlin")], [Document(content="Paris")]], |
| 87 | + retrieved_documents=[[Document(content="Berlin")]], |
| 88 | + ) |
| 89 | + |
| 90 | + |
| 91 | +def test_run_with_mixed_documents_with_and_without_scores(): |
| 92 | + evaluator = DocumentNDCGEvaluator() |
| 93 | + with pytest.raises(ValueError): |
| 94 | + evaluator.run( |
| 95 | + ground_truth_documents=[[Document(content="France", score=3), Document(content="Paris")]], |
| 96 | + retrieved_documents=[[Document(content="France"), Document(content="Germany"), Document(content="Paris")]], |
| 97 | + ) |
| 98 | + |
| 99 | + |
| 100 | +def test_run_empty_retrieved(): |
| 101 | + evaluator = DocumentNDCGEvaluator() |
| 102 | + result = evaluator.run(ground_truth_documents=[[Document(content="France")]], retrieved_documents=[[]]) |
| 103 | + assert result["individual_scores"] == [0.0] |
| 104 | + assert result["score"] == 0.0 |
| 105 | + |
| 106 | + |
| 107 | +def test_run_empty_ground_truth(): |
| 108 | + evaluator = DocumentNDCGEvaluator() |
| 109 | + result = evaluator.run(ground_truth_documents=[[]], retrieved_documents=[[Document(content="France")]]) |
| 110 | + assert result["individual_scores"] == [0.0] |
| 111 | + assert result["score"] == 0.0 |
| 112 | + |
| 113 | + |
| 114 | +def test_run_empty_retrieved_and_empty_ground_truth(): |
| 115 | + evaluator = DocumentNDCGEvaluator() |
| 116 | + result = evaluator.run(ground_truth_documents=[[]], retrieved_documents=[[]]) |
| 117 | + assert result["individual_scores"] == [0.0] |
| 118 | + assert result["score"] == 0.0 |
| 119 | + |
| 120 | + |
| 121 | +def test_run_no_retrieved(): |
| 122 | + evaluator = DocumentNDCGEvaluator() |
| 123 | + with pytest.raises(ValueError): |
| 124 | + result = evaluator.run(ground_truth_documents=[[Document(content="France")]], retrieved_documents=[]) |
| 125 | + |
| 126 | + |
| 127 | +def test_run_no_ground_truth(): |
| 128 | + evaluator = DocumentNDCGEvaluator() |
| 129 | + with pytest.raises(ValueError): |
| 130 | + evaluator.run(ground_truth_documents=[], retrieved_documents=[[Document(content="France")]]) |
| 131 | + |
| 132 | + |
| 133 | +def test_run_no_retrieved_and_no_ground_truth(): |
| 134 | + evaluator = DocumentNDCGEvaluator() |
| 135 | + with pytest.raises(ValueError): |
| 136 | + evaluator.run(ground_truth_documents=[], retrieved_documents=[]) |
| 137 | + |
| 138 | + |
| 139 | +def test_calculate_dcg_with_scores(): |
| 140 | + evaluator = DocumentNDCGEvaluator() |
| 141 | + gt_docs = [ |
| 142 | + Document(content="doc1", score=3), |
| 143 | + Document(content="doc2", score=2), |
| 144 | + Document(content="doc3", score=3), |
| 145 | + Document(content="doc4", score=0), |
| 146 | + Document(content="doc5", score=1), |
| 147 | + Document(content="doc6", score=2), |
| 148 | + ] |
| 149 | + ret_docs = [ |
| 150 | + Document(content="doc1"), |
| 151 | + Document(content="doc2"), |
| 152 | + Document(content="doc3"), |
| 153 | + Document(content="doc4"), |
| 154 | + Document(content="doc5"), |
| 155 | + Document(content="doc6"), |
| 156 | + ] |
| 157 | + dcg = evaluator.calculate_dcg(gt_docs, ret_docs) |
| 158 | + assert dcg == pytest.approx(6.8611, abs=1e-4) |
| 159 | + |
| 160 | + |
| 161 | +def test_calculate_dcg_without_scores(): |
| 162 | + evaluator = DocumentNDCGEvaluator() |
| 163 | + gt_docs = [Document(content="doc1"), Document(content="doc2")] |
| 164 | + ret_docs = [Document(content="doc2"), Document(content="doc3"), Document(content="doc1")] |
| 165 | + dcg = evaluator.calculate_dcg(gt_docs, ret_docs) |
| 166 | + assert dcg == pytest.approx(1.5, abs=1e-4) |
| 167 | + |
| 168 | + |
| 169 | +def test_calculate_dcg_empty(): |
| 170 | + evaluator = DocumentNDCGEvaluator() |
| 171 | + gt_docs = [Document(content="doc1")] |
| 172 | + ret_docs = [] |
| 173 | + dcg = evaluator.calculate_dcg(gt_docs, ret_docs) |
| 174 | + assert dcg == 0 |
| 175 | + |
| 176 | + |
| 177 | +def test_calculate_idcg_with_scores(): |
| 178 | + evaluator = DocumentNDCGEvaluator() |
| 179 | + gt_docs = [ |
| 180 | + Document(content="doc1", score=3), |
| 181 | + Document(content="doc2", score=3), |
| 182 | + Document(content="doc3", score=2), |
| 183 | + Document(content="doc4", score=3), |
| 184 | + Document(content="doc5", score=2), |
| 185 | + Document(content="doc6", score=2), |
| 186 | + ] |
| 187 | + idcg = evaluator.calculate_idcg(gt_docs) |
| 188 | + assert idcg == pytest.approx(8.7403, abs=1e-4) |
| 189 | + |
| 190 | + |
| 191 | +def test_calculate_idcg_without_scores(): |
| 192 | + evaluator = DocumentNDCGEvaluator() |
| 193 | + gt_docs = [Document(content="doc1"), Document(content="doc2"), Document(content="doc3")] |
| 194 | + idcg = evaluator.calculate_idcg(gt_docs) |
| 195 | + assert idcg == pytest.approx(2.1309, abs=1e-4) |
| 196 | + |
| 197 | + |
| 198 | +def test_calculate_idcg_empty(): |
| 199 | + evaluator = DocumentNDCGEvaluator() |
| 200 | + gt_docs = [] |
| 201 | + idcg = evaluator.calculate_idcg(gt_docs) |
| 202 | + assert idcg == 0 |
0 commit comments